8,636 research outputs found

    A Multi-Kernel Multi-Code Polar Decoder Architecture

    Get PDF
    Polar codes have received increasing attention in the past decade, and have been selected for the next generation of wireless communication standard. Most research on polar codes has focused on codes constructed from a 2×22\times2 polarization matrix, called binary kernel: codes constructed from binary kernels have code lengths that are bound to powers of 22. A few recent works have proposed construction methods based on multiple kernels of different dimensions, not only binary ones, allowing code lengths different from powers of 22. In this work, we design and implement the first multi-kernel successive cancellation polar code decoder in literature. It can decode any code constructed with binary and ternary kernels: the architecture, sized for a maximum code length NmaxN_{max}, is fully flexible in terms of code length, code rate and kernel sequence. The decoder can achieve frequency of more than 11 GHz in 6565 nm CMOS technology, and a throughput of 615615 Mb/s. The area occupation ranges between 0.110.11 mm2^2 for Nmax=256N_{max}=256 and 2.012.01 mm2^2 for Nmax=4096N_{max}=4096. Implementation results show an unprecedented degree of flexibility: with Nmax=4096N_{max}=4096, up to 5555 code lengths can be decoded with the same hardware, along with any kernel sequence and code rate

    Magic state distillation with punctured polar codes

    Get PDF
    We present a scheme for magic state distillation using punctured polar codes. Our results build on some recent work by Bardet et al. (ISIT, 2016) who discovered that polar codes can be described algebraically as decreasing monomial codes. Using this powerful framework, we construct tri-orthogonal quantum codes (Bravyi et al., PRA, 2012) that can be used to distill magic states for the TT gate. An advantage of these codes is that they permit the use of the successive cancellation decoder whose time complexity scales as O(Nlog(N))O(N\log(N)). We supplement this with numerical simulations for the erasure channel and dephasing channel. We obtain estimates for the dimensions and error rates for the resulting codes for block sizes up to 2202^{20} for the erasure channel and 2162^{16} for the dephasing channel. The dimension of the triply-even codes we obtain is shown to scale like O(N0.8)O(N^{0.8}) for the binary erasure channel at noise rate 0.010.01 and O(N0.84)O(N^{0.84}) for the dephasing channel at noise rate 0.0010.001. The corresponding bit error rates drop to roughly 8×10288\times10^{-28} for the erasure channel and 7×10157 \times 10^{-15} for the dephasing channel respectively.Comment: 18 pages, 4 figure

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Error Coefficient-reduced Polar/PAC Codes

    Full text link
    Polar codes are normally designed based on the reliability of the sub-channels in the polarized vector channel. There are various methods with diverse complexity and accuracy to evaluate the reliability of the sub-channels. However, designing polar codes solely based on the sub-channel reliability may result in poor Hamming distance properties. In this work, we propose a different approach to design the information set for polar codes and PAC codes where the objective is to reduce the number of codewords with minimum weight (a.k.a. error coefficient) of a code designed for maximum reliability. This approach is based on the coset-wise characterization of the rows of polar transform GN\mathbf{G}_N involved in the formation of the minimum-weight codewords. Our analysis capitalizes on the properties of the polar transform based on its row and column indices. The numerical results show that the designed codes outperform PAC codes and CRC-Polar codes at the practical block error rate of 10210310^{-2}-10^{-3}. Furthermore, a by-product of the combinatorial properties analyzed in this paper is an alternative enumeration method of the minimum-weight codewords.Comment: 19 pages, 10 figures, 4 tables, 2 listing
    corecore