4,975 research outputs found

    Social Collaborative Retrieval

    Full text link
    Socially-based recommendation systems have recently attracted significant interest, and a number of studies have shown that social information can dramatically improve a system's predictions of user interests. Meanwhile, there are now many potential applications that involve aspects of both recommendation and information retrieval, and the task of collaborative retrieval---a combination of these two traditional problems---has recently been introduced. Successful collaborative retrieval requires overcoming severe data sparsity, making additional sources of information, such as social graphs, particularly valuable. In this paper we propose a new model for collaborative retrieval, and show that our algorithm outperforms current state-of-the-art approaches by incorporating information from social networks. We also provide empirical analyses of the ways in which cultural interests propagate along a social graph using a real-world music dataset.Comment: 10 page

    Node Embedding over Temporal Graphs

    Full text link
    In this work, we present a method for node embedding in temporal graphs. We propose an algorithm that learns the evolution of a temporal graph's nodes and edges over time and incorporates this dynamics in a temporal node embedding framework for different graph prediction tasks. We present a joint loss function that creates a temporal embedding of a node by learning to combine its historical temporal embeddings, such that it optimizes per given task (e.g., link prediction). The algorithm is initialized using static node embeddings, which are then aligned over the representations of a node at different time points, and eventually adapted for the given task in a joint optimization. We evaluate the effectiveness of our approach over a variety of temporal graphs for the two fundamental tasks of temporal link prediction and multi-label node classification, comparing to competitive baselines and algorithmic alternatives. Our algorithm shows performance improvements across many of the datasets and baselines and is found particularly effective for graphs that are less cohesive, with a lower clustering coefficient
    • …
    corecore