17,858 research outputs found

    Lucas' theorem: its generalizations, extensions and applications (1878--2014)

    Full text link
    In 1878 \'E. Lucas proved a remarkable result which provides a simple way to compute the binomial coefficient (nm){n\choose m} modulo a prime pp in terms of the binomial coefficients of the base-pp digits of nn and mm: {\it If pp is a prime, n=n0+n1p+⋯+nspsn=n_0+n_1p+\cdots +n_sp^s and m=m0+m1p+⋯+mspsm=m_0+m_1p+\cdots +m_sp^s are the pp-adic expansions of nonnegative integers nn and mm, then \begin{equation*} {n\choose m}\equiv \prod_{i=0}^{s}{n_i\choose m_i}\pmod{p}. \end{equation*}} The above congruence, the so-called {\it Lucas' theorem} (or {\it Theorem of Lucas}), plays an important role in Number Theory and Combinatorics. In this article, consisting of six sections, we provide a historical survey of Lucas type congruences, generalizations of Lucas' theorem modulo prime powers, Lucas like theorems for some generalized binomial coefficients, and some their applications. In Section 1 we present the fundamental congruences modulo a prime including the famous Lucas' theorem. In Section 2 we mention several known proofs and some consequences of Lucas' theorem. In Section 3 we present a number of extensions and variations of Lucas' theorem modulo prime powers. In Section 4 we consider the notions of the Lucas property and the double Lucas property, where we also present numerous integer sequences satisfying one of these properties or a certain Lucas type congruence. In Section 5 we collect several known Lucas type congruences for some generalized binomial coefficients. In particular, this concerns the Fibonomial coefficients, the Lucas uu-nomial coefficients, the Gaussian qq-nomial coefficients and their generalizations. Finally, some applications of Lucas' theorem in Number Theory and Combinatorics are given in Section 6.Comment: 51 pages; survey article on Lucas type congruences closely related to Lucas' theore

    Coincidences in generalized Lucas sequences

    Full text link
    For an integer k≥2k\geq 2, let (Ln(k))n(L_{n}^{(k)})_{n} be the k−k-generalized Lucas sequence which starts with 0,…,0,2,10,\ldots,0,2,1 (kk terms) and each term afterwards is the sum of the kk preceding terms. In this paper, we find all the integers that appear in different generalized Lucas sequences; i.e., we study the Diophantine equation Ln(k)=Lm(ℓ)L_n^{(k)}=L_m^{(\ell)} in nonnegative integers n,k,m,ℓn,k,m,\ell with k,ℓ≥2k, \ell\geq 2. The proof of our main theorem uses lower bounds for linear forms in logarithms of algebraic numbers and a version of the Baker-Davenport reduction method. This paper is a continuation of the earlier work [4].Comment: 14 page
    • …
    corecore