979 research outputs found

    Forward-backward truncated Newton methods for convex composite optimization

    Full text link
    This paper proposes two proximal Newton-CG methods for convex nonsmooth optimization problems in composite form. The algorithms are based on a a reformulation of the original nonsmooth problem as the unconstrained minimization of a continuously differentiable function, namely the forward-backward envelope (FBE). The first algorithm is based on a standard line search strategy, whereas the second one combines the global efficiency estimates of the corresponding first-order methods, while achieving fast asymptotic convergence rates. Furthermore, they are computationally attractive since each Newton iteration requires the approximate solution of a linear system of usually small dimension

    Splitting methods with variable metric for KL functions

    Full text link
    We study the convergence of general abstract descent methods applied to a lower semicontinuous nonconvex function f that satisfies the Kurdyka-Lojasiewicz inequality in a Hilbert space. We prove that any precompact sequence converges to a critical point of f and obtain new convergence rates both for the values and the iterates. The analysis covers alternating versions of the forward-backward method with variable metric and relative errors. As an example, a nonsmooth and nonconvex version of the Levenberg-Marquardt algorithm is detailled

    Globally Convergent Coderivative-Based Generalized Newton Methods in Nonsmooth Optimization

    Full text link
    This paper proposes and justifies two globally convergent Newton-type methods to solve unconstrained and constrained problems of nonsmooth optimization by using tools of variational analysis and generalized differentiation. Both methods are coderivative-based and employ generalized Hessians (coderivatives of subgradient mappings) associated with objective functions, which are either of class C1,1\mathcal{C}^{1,1}, or are represented in the form of convex composite optimization, where one of the terms may be extended-real-valued. The proposed globally convergent algorithms are of two types. The first one extends the damped Newton method and requires positive-definiteness of the generalized Hessians for its well-posedness and efficient performance, while the other algorithm is of {the regularized Newton type} being well-defined when the generalized Hessians are merely positive-semidefinite. The obtained convergence rates for both methods are at least linear, but become superlinear under the semismooth∗^* property of subgradient mappings. Problems of convex composite optimization are investigated with and without the strong convexity assumption {on smooth parts} of objective functions by implementing the machinery of forward-backward envelopes. Numerical experiments are conducted for Lasso problems and for box constrained quadratic programs with providing performance comparisons of the new algorithms and some other first-order and second-order methods that are highly recognized in nonsmooth optimization.Comment: arXiv admin note: text overlap with arXiv:2101.1055
    • …
    corecore