4,331 research outputs found

    Circular Convolution Filter Bank Multicarrier (FBMC) System with Index Modulation

    Get PDF
    Orthogonal frequency division multiplexing with index modulation (OFDM-IM), which uses the subcarrier indices as a source of information, has attracted considerable interest recently. Motivated by the index modulation (IM) concept, we build a circular convolution filter bank multicarrier with index modulation (C-FBMC-IM) system in this paper. The advantages of the C-FBMC-IM system are investigated by comparing the interference power with the conventional C-FBMC system. As some subcarriers carry nothing but zeros, the minimum mean square error (MMSE) equalization bias power will be smaller comparing to the conventional C-FBMC system. As a result, our C-FBMC-IM system outperforms the conventional C-FBMC system. The simulation results demonstrate that both BER and spectral efficiency improvement can be achieved when we apply IM into the C-FBMC system

    Extended GFDM Framework: OTFS and GFDM Comparison

    Full text link
    Orthogonal time frequency space modulation (OTFS) has been recently proposed to achieve time and frequency diversity, especially in linear time-variant (LTV) channels with large Doppler frequencies. The idea is based on the precoding of the data symbols using symplectic finite Fourier transform (SFFT) then transmitting them by mean of orthogonal frequency division multiplexing (OFDM) waveform. Consequently, the demodulator and channel equalization can be coupled in one processing step. As a distinguished feature, the demodulated data symbols have roughly equal gain independent of the channel selectivity. On the other hand, generalized frequency division multiplexing (GFDM) modulation also employs the spreading over the time and frequency domains using circular filtering. Accordingly, the data symbols are implicitly precoded in a similar way as applying SFFT in OTFS. In this paper, we present an extended representation of GFDM which shows that OTFS can be processed as a GFDM signal with simple permutation. Nevertheless, this permutation is the key factor behind the outstanding performance of OTFS in LTV channels, as demonstrated in this work. Furthermore, the representation of OTFS in the GFDM framework provides an efficient implementation, that has been intensively investigated for GFDM, and facilitates the understanding of the OTFS distinct features.Comment: Accepted in IEEE Global Communications Conference 9-13 December 2018 Abu Dhabi, UA
    • …
    corecore