6 research outputs found

    Going Further with Point Pair Features

    Full text link
    Point Pair Features is a widely used method to detect 3D objects in point clouds, however they are prone to fail in presence of sensor noise and background clutter. We introduce novel sampling and voting schemes that significantly reduces the influence of clutter and sensor noise. Our experiments show that with our improvements, PPFs become competitive against state-of-the-art methods as it outperforms them on several objects from challenging benchmarks, at a low computational cost.Comment: Corrected post-print of manuscript accepted to the European Conference on Computer Vision (ECCV) 2016; https://link.springer.com/chapter/10.1007/978-3-319-46487-9_5

    An Iterative 3D Registration Algorithm using Random Pair of Plane Patches

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 8. ์ด๋ฒ”ํฌ.๋ณธ ๋…ผ๋ฌธ์€ 3์ฐจ์› ๊ณต๊ฐ„์—์„œ ํ‰๋ฉด ํŒจ์น˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ด๋ฏธ์ง€ ์ •ํ•ฉ์„ ํ•˜๋Š” ์ƒˆ๋กœ์šด ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ •ํ•ฉ์— ์‚ฌ์šฉ๋˜๋Š” ๋Œ€๋ถ€๋ถ„์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํŠน์ •์  ๊ฐ„์˜ ์œ ์‚ฌ๋„๋ฅผ ์ด์šฉํ•˜์—ฌ ๋Œ€์‘๊ด€๊ณ„๋ฅผ ๊ตฌํ•˜๊ณ  ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‘ ์ขŒํ‘œ๊ณ„ ์‚ฌ์ด์˜ ๊ฐ•์ฒด๋ณ€ํ™˜์„ ๊ตฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋Œ€์‘๊ด€๊ณ„๋ฅผ ๊ตฌํ•˜๋Š” ๋ฌธ์ œ๋Š” ํŠน์ง•์ ์— ๋Œ€ํ•œ ์ •๋ณด๊ฐ€ ๋ถ€์กฑํ•˜๊ฑฐ๋‚˜ ์ด์ƒ์ ์ด ๋ฐœ์ƒํ•˜๋Š” ๊ฒฝ์šฐ ๋ถ€์ •ํ™•ํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ๊ณ  ์ด๋Š” ๊ณง ์ •ํ•ฉ์˜ ์‹คํŒจ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ‰๋ฉด ํŒจ์น˜๋“ค์˜ ์ง‘ํ•ฉ์œผ๋กœ ์ด๋ฃจ์–ด์ง„ ๋‘ 3์ฐจ์› ์ขŒํ‘œ๊ณ„์—์„œ ๊ฐ๊ฐ ์ž„์˜์˜ ํ‰๋ฉด์„ ์ถ”์ถœํ•œ ํ›„ ๊ฑฐ๋ฆฌ ์ œ๊ณฑ ํ‰๊ท  ํ•จ์ˆ˜์˜ ๊ฐ’์„ ๊ณ„์‚ฐํ•˜์—ฌ ๋‘ ์ขŒํ‘œ๊ณ„ ๊ฐ„์˜ ์œ ์‚ฌ๋„๋ฅผ ์ธก์ •ํ•œ๋‹ค. ์ด ๊ณผ์ •์„ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ •ํ•ฉํ•˜๊ณ ์ž ํ•˜๋Š” ํ”„๋ ˆ์ž„์„ ๊ฐ€์žฅ ์œ ์‚ฌํ•˜๊ฒŒ ๋งŒ๋“œ๋Š” ๊ฐ•์ฒด๋ณ€ํ™˜์„ ๊ฒฐ์ •ํ•œ๋‹ค. ๊ทธ ๋‹ค์Œ ๊ณ ์ •๋œ ๊ฐ•์ฒด๋ณ€ํ™˜์— ๋Œ€ํ•˜์—ฌ ๊ฑฐ๋ฆฌ ์ œ๊ณฑ ํ‰๊ท  ํ•จ์ˆ˜์˜ ๊ฐ’์„ ์ตœ์†Œํ™” ์‹œํ‚ค๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ํ‰ํ–‰์ด๋™ ๋ฒกํ„ฐ๋ฅผ ๋ณด์ •ํ•˜์—ฌ ์ •ํ•ฉ์„ ์™„๋ฃŒํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ๊ธฐ๋ฒ•์€ ๋Œ€์‘๊ด€๊ณ„๋ฅผ ์ฐพ๋Š” ๋ฐ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„์„ ์ค„์ผ ์ˆ˜ ์žˆ๊ณ  ์ด์ƒ์ ์— ๊ฐ•์ธํ•˜๋‹ค๋Š” ๋ฐ ์˜์˜๊ฐ€ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ์˜ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ•˜์˜€๋‹ค.๋ชฉ์ฐจ ์ดˆ๋ก i ์ œ 1 ์žฅ Introduction 1 1.1 Backgrounds and Motivations . . . . . . . . . . . . . . . . . . . . 1 1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Point-based Registration . . . . . . . . . . . . . . . . . . . 3 1.2.2 Line-based Registration . . . . . . . . . . . . . . . . . . . 3 1.2.3 Plane-based Registration . . . . . . . . . . . . . . . . . . 4 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 ์ œ 2 ์žฅ Preliminaries 10 2.1 Plane Patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.1 Notation for Plane Patch . . . . . . . . . . . . . . . . . . 10 2.1.2 Problem Formulation using Plane Patch . . . . . . . . . . 14 2.2 Quaternion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Basis of quaternion . . . . . . . . . . . . . . . . . . . . . . 16 2.3 RANSAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 ์ œ 3 ์žฅ Proposed Method 21 3.1 Selection of plane patch pair . . . . . . . . . . . . . . . . . . . . . 22 3.2 Evaluation of Rigid Transformation . . . . . . . . . . . . . . . . . 25 3.2.1 Evaluation of Rotation Matrix based on Quaternion . . . 25 3.2.2 Evaluation of Translation Vector based on Moore-Penrose Pseudo Inverse Matrix . . . . . . . . . . . . . . . . . . . . 27 3.3 Transformation of Plane Patches . . . . . . . . . . . . . . . . . . 27 3.4 Mean Square Distance Function . . . . . . . . . . . . . . . . . . . 32 3.5 Selection of Rigid Transformation . . . . . . . . . . . . . . . . . . 37 3.6 Optimization of Translation Vector . . . . . . . . . . . . . . . . . 38 ์ œ 4 ์žฅ Simulations 40 4.1 Preconditions for the Simulation . . . . . . . . . . . . . . . . . . 40 4.2 Validity of Random Iteration . . . . . . . . . . . . . . . . . . . . 41 4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ์ œ 5 ์žฅ Real Experiments 49 5.1 Environments for the Experiments . . . . . . . . . . . . . . . . . 49 5.2 Extraction of plane patches from point cloud . . . . . . . . . . . 50 5.3 Results of Real Experiments . . . . . . . . . . . . . . . . . . . . . 51 ์ œ 6 ์žฅ Conclusion 52 ์ฐธ๊ณ ๋ฌธํ—Œ 53 Abstract 59 ๊ฐ์‚ฌ์˜ ๊ธ€ 61Maste

    Super edge 4-points congruent sets-based point cloud global registration

    Get PDF
    With the acceleration in three-dimensional (3D) high-frame-rate sensing technologies, dense point clouds collected from multiple standpoints pose a great challenge for the accuracy and efficiency of registration. The combination of coarse registration and fine registration has been extensively promoted. Unlike the requirement of small movements between scan pairs in fine registration, coarse registration can match scans with arbitrary initial poses. The state-of-the-art coarse methods, Super 4-Points Congruent Sets algorithm based on the 4-Points Congruent Sets, improves the speed of registration to a linear order via smart indexing. However, the lack of reduction in the scale of original point clouds limits the application. Besides, the coplanarity of registration bases prevents further reduction of search space. This paper proposes a novel registration method called the Super Edge 4-Points Congruent Sets to address the above problems. The proposed algorithm follows a three-step procedure, including boundary segmentation, overlapping regions extraction, and bases selection. Firstly, an improved method based on vector angle is used to segment the original point clouds aiming to thin out the scale of the initial point clouds. Furthermore, overlapping regions extraction is executed to find out the overlapping regions on the contour. Finally, the proposed method selects registration bases conforming to the distance constraints from the candidate set without consideration about coplanarity. Experiments on various datasets with different characteristics have demonstrated that the average time complexity of the proposed algorithm is improved by 89.76%, and the accuracy is improved by 5 mm on average than the Super 4-Points Congruent Sets algorithm. More encouragingly, the experimental results show that the proposed algorithm can be applied to various restrictive cases, such as few overlapping regions and massive noise. Therefore, the algorithm proposed in this paper is a faster and more robust method than Super 4-Points Congruent Sets under the guarantee of the promised quality.</jats:p

    Generalized 4-Points Congruent Sets for 3D Registration

    No full text
    corecore