94,827 research outputs found
Notions of Input to Output Stability
This paper deals with several related notions of output stability with
respect to inputs. The inputs may be thought of as disturbances; when there are
no inputs, one obtains generalizations of the classical concepts of partial
stability. The main notion studied is called input to output stability (IOS),
and it reduces to input to state stability (ISS) when the output equals the
complete state. Several variants, which formalize in different manners the
transient behavior, are introduced. The main results provide a comparison among
these notions. A companion paper establishes necessary and sufficient
Lyapunov-theoretic characterizations.Comment: 16 pages See http://www.math.rutgers.edu/~sontag/ for many related
paper
Upper and Lower Bounds in Relator Spaces
2000 Mathematics Subject Classification: 06A06, 54E15An ordered pair X(R) = ( X, R ) consisting of a nonvoid set X and a nonvoid family R of binary relations on X is called a relator
space. Relator spaces are straightforward generalizations not only of uniform spaces, but also of ordered sets.
Therefore, in a relator space we can naturally define not only some topological notions, but also some order theoretic ones. It turns out that these two, apparently quite different, types of notions are closely related to each other through complementations.The research of the author has been supported by the grant OTKA T-030082
Lucas' theorem: its generalizations, extensions and applications (1878--2014)
In 1878 \'E. Lucas proved a remarkable result which provides a simple way to
compute the binomial coefficient modulo a prime in terms of
the binomial coefficients of the base- digits of and : {\it If is
a prime, and are the
-adic expansions of nonnegative integers and , then
\begin{equation*} {n\choose m}\equiv \prod_{i=0}^{s}{n_i\choose m_i}\pmod{p}.
\end{equation*}}
The above congruence, the so-called {\it Lucas' theorem} (or {\it Theorem of
Lucas}), plays an important role in Number Theory and Combinatorics. In this
article, consisting of six sections, we provide a historical survey of Lucas
type congruences, generalizations of Lucas' theorem modulo prime powers, Lucas
like theorems for some generalized binomial coefficients, and some their
applications.
In Section 1 we present the fundamental congruences modulo a prime including
the famous Lucas' theorem. In Section 2 we mention several known proofs and
some consequences of Lucas' theorem. In Section 3 we present a number of
extensions and variations of Lucas' theorem modulo prime powers. In Section 4
we consider the notions of the Lucas property and the double Lucas property,
where we also present numerous integer sequences satisfying one of these
properties or a certain Lucas type congruence. In Section 5 we collect several
known Lucas type congruences for some generalized binomial coefficients. In
particular, this concerns the Fibonomial coefficients, the Lucas -nomial
coefficients, the Gaussian -nomial coefficients and their generalizations.
Finally, some applications of Lucas' theorem in Number Theory and Combinatorics
are given in Section 6.Comment: 51 pages; survey article on Lucas type congruences closely related to
Lucas' theore
Turing jumps through provability
Fixing some computably enumerable theory , the
Friedman-Goldfarb-Harrington (FGH) theorem says that over elementary
arithmetic, each formula is equivalent to some formula of the form
provided that is consistent. In this paper we give various
generalizations of the FGH theorem. In particular, for we relate
formulas to provability statements which
are a formalization of "provable in together with all true
sentences". As a corollary we conclude that each is
-complete. This observation yields us to consider a recursively
defined hierarchy of provability predicates which look a lot
like except that where calls upon the
oracle of all true sentences, the recursively
calls upon the oracle of all true sentences of the form . As such we obtain a `syntax-light' characterization of
definability whence of Turing jumps which is readily extended
beyond the finite. Moreover, we observe that the corresponding provability
predicates are well behaved in that together they provide a
sound interpretation of the polymodal provability logic
- …
