3 research outputs found

    Optimal universal quantum cloning:asymmetries and fidelity measures

    Get PDF
    We study the problem of universal quantum cloning -- taking several identical copies of a pure but unknown quantum state and producing further copies. While it is well known that it is impossible to perfectly reproduce the state, how well the copies can be cloned can be quantified using the fidelity. We examine how individual fidelities can be traded against each other, and how different fidelity measures can be incorporated. The broadly applicable formalism into which we transform the cloning problem is described as a series of quadratic constraints which are amenable to mathematical and computational scrutiny. As such, we reproduce all known results on optimal universal cloning, and push the recent results on asymmetric cloning much further, giving new trade-off relations between fidelities for broad classes of optimal cloning machines. We also provide substantial evidence that motivates why other parameter ranges (number of input copies) have not, and will not, yield to similar analysis.Comment: 38 pages, 4 figures. Published versio
    corecore