74 research outputs found

    General Recursion via Coinductive Types

    Full text link
    A fertile field of research in theoretical computer science investigates the representation of general recursive functions in intensional type theories. Among the most successful approaches are: the use of wellfounded relations, implementation of operational semantics, formalization of domain theory, and inductive definition of domain predicates. Here, a different solution is proposed: exploiting coinductive types to model infinite computations. To every type A we associate a type of partial elements Partial(A), coinductively generated by two constructors: the first, return(a) just returns an element a:A; the second, step(x), adds a computation step to a recursive element x:Partial(A). We show how this simple device is sufficient to formalize all recursive functions between two given types. It allows the definition of fixed points of finitary, that is, continuous, operators. We will compare this approach to different ones from the literature. Finally, we mention that the formalization, with appropriate structural maps, defines a strong monad.Comment: 28 page

    Termination Casts: A Flexible Approach to Termination with General Recursion

    Full text link
    This paper proposes a type-and-effect system called Teqt, which distinguishes terminating terms and total functions from possibly diverging terms and partial functions, for a lambda calculus with general recursion and equality types. The central idea is to include a primitive type-form "Terminates t", expressing that term t is terminating; and then allow terms t to be coerced from possibly diverging to total, using a proof of Terminates t. We call such coercions termination casts, and show how to implement terminating recursion using them. For the meta-theory of the system, we describe a translation from Teqt to a logical theory of termination for general recursive, simply typed functions. Every typing judgment of Teqt is translated to a theorem expressing the appropriate termination property of the computational part of the Teqt term.Comment: In Proceedings PAR 2010, arXiv:1012.455

    Recursive Definitions of Monadic Functions

    Full text link
    Using standard domain-theoretic fixed-points, we present an approach for defining recursive functions that are formulated in monadic style. The method works both in the simple option monad and the state-exception monad of Isabelle/HOL's imperative programming extension, which results in a convenient definition principle for imperative programs, which were previously hard to define. For such monadic functions, the recursion equation can always be derived without preconditions, even if the function is partial. The construction is easy to automate, and convenient induction principles can be derived automatically.Comment: In Proceedings PAR 2010, arXiv:1012.455

    Step-Indexed Normalization for a Language with General Recursion

    Get PDF
    The Trellys project has produced several designs for practical dependently typed languages. These languages are broken into two fragments-a_logical_fragment where every term normalizes and which is consistent when interpreted as a logic, and a_programmatic_fragment with general recursion and other convenient but unsound features. In this paper, we present a small example language in this style. Our design allows the programmer to explicitly mention and pass information between the two fragments. We show that this feature substantially complicates the metatheory and present a new technique, combining the traditional Girard-Tait method with step-indexed logical relations, which we use to show normalization for the logical fragment.Comment: In Proceedings MSFP 2012, arXiv:1202.240

    Normalization by Evaluation in the Delay Monad: A Case Study for Coinduction via Copatterns and Sized Types

    Get PDF
    In this paper, we present an Agda formalization of a normalizer for simply-typed lambda terms. The normalizer consists of two coinductively defined functions in the delay monad: One is a standard evaluator of lambda terms to closures, the other a type-directed reifier from values to eta-long beta-normal forms. Their composition, normalization-by-evaluation, is shown to be a total function a posteriori, using a standard logical-relations argument. The successful formalization serves as a proof-of-concept for coinductive programming and reasoning using sized types and copatterns, a new and presently experimental feature of Agda.Comment: In Proceedings MSFP 2014, arXiv:1406.153

    Coinductive Big-Step Semantics for Concurrency

    Full text link
    In a paper presented at SOS 2010, we developed a framework for big-step semantics for interactive input-output in combination with divergence, based on coinductive and mixed inductive-coinductive notions of resumptions, evaluation and termination-sensitive weak bisimilarity. In contrast to standard inductively defined big-step semantics, this framework handles divergence properly; in particular, runs that produce some observable effects and then diverge, are not "lost". Here we scale this approach for shared-variable concurrency on a simple example language. We develop the metatheory of our semantics in a constructive logic.Comment: In Proceedings PLACES 2013, arXiv:1312.221

    Beating the Productivity Checker Using Embedded Languages

    Full text link
    Some total languages, like Agda and Coq, allow the use of guarded corecursion to construct infinite values and proofs. Guarded corecursion is a form of recursion in which arbitrary recursive calls are allowed, as long as they are guarded by a coinductive constructor. Guardedness ensures that programs are productive, i.e. that every finite prefix of an infinite value can be computed in finite time. However, many productive programs are not guarded, and it can be nontrivial to put them in guarded form. This paper gives a method for turning a productive program into a guarded program. The method amounts to defining a problem-specific language as a data type, writing the program in the problem-specific language, and writing a guarded interpreter for this language.Comment: In Proceedings PAR 2010, arXiv:1012.455

    Tracing monadic computations and representing effects

    Full text link
    In functional programming, monads are supposed to encapsulate computations, effectfully producing the final result, but keeping to themselves the means of acquiring it. For various reasons, we sometimes want to reveal the internals of a computation. To make that possible, in this paper we introduce monad transformers that add the ability to automatically accumulate observations about the course of execution as an effect. We discover that if we treat the resulting trace as the actual result of the computation, we can find new functionality in existing monads, notably when working with non-terminating computations.Comment: In Proceedings MSFP 2012, arXiv:1202.240

    Inductive and Coinductive Components of Corecursive Functions in Coq

    Get PDF
    In Constructive Type Theory, recursive and corecursive definitions are subject to syntactic restrictions which guarantee termination for recursive functions and productivity for corecursive functions. However, many terminating and productive functions do not pass the syntactic tests. Bove proposed in her thesis an elegant reformulation of the method of accessibility predicates that widens the range of terminative recursive functions formalisable in Constructive Type Theory. In this paper, we pursue the same goal for productive corecursive functions. Notably, our method of formalisation of coinductive definitions of productive functions in Coq requires not only the use of ad-hoc predicates, but also a systematic algorithm that separates the inductive and coinductive parts of functions.Comment: Dans Coalgebraic Methods in Computer Science (2008

    Resumptions, Weak Bisimilarity and Big-Step Semantics for While with Interactive I/O: An Exercise in Mixed Induction-Coinduction

    Full text link
    We look at the operational semantics of languages with interactive I/O through the glasses of constructive type theory. Following on from our earlier work on coinductive trace-based semantics for While, we define several big-step semantics for While with interactive I/O, based on resumptions and termination-sensitive weak bisimilarity. These require nesting inductive definitions in coinductive definitions, which is interesting both mathematically and from the point-of-view of implementation in a proof assistant. After first defining a basic semantics of statements in terms of resumptions with explicit internal actions (delays), we introduce a semantics in terms of delay-free resumptions that essentially removes finite sequences of delays on the fly from those resumptions that are responsive. Finally, we also look at a semantics in terms of delay-free resumptions supplemented with a silent divergence option. This semantics hinges on decisions between convergence and divergence and is only equivalent to the basic one classically. We have fully formalized our development in Coq.Comment: In Proceedings SOS 2010, arXiv:1008.190
    corecore