10,232 research outputs found

    The ALPS project: open source software for strongly correlated systems

    Full text link
    We present the ALPS (Algorithms and Libraries for Physics Simulations) project, an international open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. Development is centered on common XML and binary data formats, on libraries to simplify and speed up code development, and on full-featured simulation programs. The programs enable non-experts to start carrying out numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), as well as the density matrix renormalization group (DMRG). The software is available from our web server at http://alps.comp-phys.org.Comment: For full software and introductory turorials see http://alps.comp-phys.or

    Charged black holes in string-inspired gravity: I. Causal structures and responses of the Brans-Dicke field

    Full text link
    We investigate gravitational collapses of charged black holes in string-inspired gravity models, including dilaton gravity and braneworld model, as well as f(R) gravity and the ghost limit. If we turn on gauge coupling, the causal structures and the responses of the Brans-Dicke field depend on the coupling between the charged matter and the Brans-Dicke field. For Type IIA inspired models, a Cauchy horizon exists, while there is no Cauchy horizon for Type I or Heterotic inspired models. For Type IIA inspired models, the no-hair theorem is satisfied asymptotically, while it is biased to the weak coupling limit for Type I or Heterotic inspired models. Apart from string theory, we find that in the ghost limit, a gravitational collapse can induce inflation by itself and create one-way traversable wormholes without the need of other special initial conditions.Comment: 45 pages, 22 figure

    Loop Quantum Gravity and the The Planck Regime of Cosmology

    Full text link
    The very early universe provides the best arena we currently have to test quantum gravity theories. The success of the inflationary paradigm in accounting for the observed inhomogeneities in the cosmic microwave background already illustrates this point to a certain extent because the paradigm is based on quantum field theory on the curved cosmological space-times. However, this analysis excludes the Planck era because the background space-time satisfies Einstein's equations all the way back to the big bang singularity. Using techniques from loop quantum gravity, the paradigm has now been extended to a self-consistent theory from the Planck regime to the onset of inflation, covering some 11 orders of magnitude in curvature. In addition, for a narrow window of initial conditions, there are departures from the standard paradigm, with novel effects, such as a modification of the consistency relation involving the scalar and tensor power spectra and a new source for non-Gaussianities. Thus, the genesis of the large scale structure of the universe can be traced back to quantum gravity fluctuations \emph{in the Planck regime}. This report provides a bird's eye view of these developments for the general relativity community.Comment: 23 pages, 4 figures. Plenary talk at the Conference: Relativity and Gravitation: 100 Years after Einstein in Prague. To appear in the Proceedings to be published by Edition Open Access. Summarizes results that appeared in journal articles [2-13

    The numerical approach to quantum field theory in a non-commutative space

    Get PDF
    Numerical simulation is an important non-perturbative tool to study quantum field theories defined in non-commutative spaces. In this contribution, a selection of results from Monte Carlo calculations for non-commutative models is presented, and their implications are reviewed. In addition, we also discuss how related numerical techniques have been recently applied in computer simulations of dimensionally reduced supersymmetric theories.Comment: 15 pages, 6 figures, invited talk presented at the Humboldt Kolleg "Open Problems in Theoretical Physics: the Issue of Quantum Space-Time", to appear in the proceedings of the Corfu Summer Institute 2015 "School and Workshops on Elementary Particle Physics and Gravity" (Corfu, Greece, 1-27 September 2015

    From Geometry to Numerics: interdisciplinary aspects in mathematical and numerical relativity

    Full text link
    This article reviews some aspects in the current relationship between mathematical and numerical General Relativity. Focus is placed on the description of isolated systems, with a particular emphasis on recent developments in the study of black holes. Ideas concerning asymptotic flatness, the initial value problem, the constraint equations, evolution formalisms, geometric inequalities and quasi-local black hole horizons are discussed on the light of the interaction between numerical and mathematical relativists.Comment: Topical review commissioned by Classical and Quantum Gravity. Discussion inspired by the workshop "From Geometry to Numerics" (Paris, 20-24 November, 2006), part of the "General Relativity Trimester" at the Institut Henri Poincare (Fall 2006). Comments and references added. Typos corrected. Submitted to Classical and Quantum Gravit
    corecore