1,208,854 research outputs found
New Algorithms for Computing a Single Component of the Discrete Fourier Transform
This paper introduces the theory and hardware implementation of two new
algorithms for computing a single component of the discrete Fourier transform.
In terms of multiplicative complexity, both algorithms are more efficient, in
general, than the well known Goertzel Algorithm.Comment: 4 pages, 3 figures, 1 table. In: 10th International Symposium on
Communication Theory and Applications, Ambleside, U
Some properties of WKB series
We investigate some properties of the WKB series for arbitrary analytic
potentials and then specifically for potentials ( even), where more
explicit formulae for the WKB terms are derived. Our main new results are: (i)
We find the explicit functional form for the general WKB terms ,
where one has only to solve a general recursion relation for the rational
coefficients. (ii) We give a systematic algorithm for a dramatic simplification
of the integrated WKB terms that enter the energy
eigenvalue equation. (iii) We derive almost explicit formulae for the WKB terms
for the energy eigenvalues of the homogeneous power law potentials , where is even. In particular, we obtain effective algorithms to
compute and reduce the terms of these series.Comment: 18 pages, submitted to Journal of Physics A: Mathematical and Genera
Are Lock-Free Concurrent Algorithms Practically Wait-Free?
Lock-free concurrent algorithms guarantee that some concurrent operation will
always make progress in a finite number of steps. Yet programmers prefer to
treat concurrent code as if it were wait-free, guaranteeing that all operations
always make progress. Unfortunately, designing wait-free algorithms is
generally a very complex task, and the resulting algorithms are not always
efficient. While obtaining efficient wait-free algorithms has been a long-time
goal for the theory community, most non-blocking commercial code is only
lock-free.
This paper suggests a simple solution to this problem. We show that, for a
large class of lock- free algorithms, under scheduling conditions which
approximate those found in commercial hardware architectures, lock-free
algorithms behave as if they are wait-free. In other words, programmers can
keep on designing simple lock-free algorithms instead of complex wait-free
ones, and in practice, they will get wait-free progress.
Our main contribution is a new way of analyzing a general class of lock-free
algorithms under a stochastic scheduler. Our analysis relates the individual
performance of processes with the global performance of the system using Markov
chain lifting between a complex per-process chain and a simpler system progress
chain. We show that lock-free algorithms are not only wait-free with
probability 1, but that in fact a general subset of lock-free algorithms can be
closely bounded in terms of the average number of steps required until an
operation completes.
To the best of our knowledge, this is the first attempt to analyze progress
conditions, typically stated in relation to a worst case adversary, in a
stochastic model capturing their expected asymptotic behavior.Comment: 25 page
Polynomial equality testing for terms with shared substructures
Sharing of substructures like subterms and subcontexts in terms is a common method for space-efficient representation of terms, which allows for example to represent exponentially large terms in polynomial space, or to represent terms with iterated substructures in a compact form. We present singleton tree grammars as a general formalism for the treatment of sharing in terms. Singleton tree grammars (STG) are recursion-free context-free tree grammars without alternatives for non-terminals and at most unary second-order nonterminals. STGs generalize Plandowski's singleton context free grammars to terms (trees). We show that the test, whether two different nonterminals in an STG generate the same term can be done in polynomial time, which implies that the equality test of terms with shared terms and contexts, where composition of contexts is permitted, can be done in polynomial time in the size of the representation. This will allow polynomial-time algorithms for terms exploiting sharing. We hope that this technique will lead to improved upper complexity bounds for variants of second order unification algorithms, in particular for variants of context unification and bounded second order unification
Robustness and Regularization of Support Vector Machines
We consider regularized support vector machines (SVMs) and show that they are
precisely equivalent to a new robust optimization formulation. We show that
this equivalence of robust optimization and regularization has implications for
both algorithms, and analysis. In terms of algorithms, the equivalence suggests
more general SVM-like algorithms for classification that explicitly build in
protection to noise, and at the same time control overfitting. On the analysis
front, the equivalence of robustness and regularization, provides a robust
optimization interpretation for the success of regularized SVMs. We use the
this new robustness interpretation of SVMs to give a new proof of consistency
of (kernelized) SVMs, thus establishing robustness as the reason regularized
SVMs generalize well
- …
