384 research outputs found

    Enumeration of saturated chains in Dyck lattices

    Get PDF
    We determine a general formula to compute the number of saturated chains in Dyck lattices, and we apply it to find the number of saturated chains of length 2 and 3. We also compute what we call the Hasse index (of order 2 and 3) of Dyck lattices, which is the ratio between the total number of saturated chains (of length 2 and 3) and the cardinality of the underlying poset.Comment: 9 page

    Ascent Sequences Avoiding Pairs of Patterns

    Get PDF
    Ascent sequences were introduced by Bousquet-Melou et al. in connection with (2+2)-avoiding posets and their pattern avoidance properties were first considered by Duncan and Steingrímsson. In this paper, we consider ascent sequences of length n role= presentation style= display: inline; font-size: 11.2px; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; font-family: Verdana, Arial, Helvetica, sans-serif; position: relative; \u3enn avoiding two patterns of length 3, and we determine an exact enumeration for 16 different pairs of patterns. Methods include simple recurrences, bijections to other combinatorial objects (including Dyck paths and pattern-avoiding permutations), and generating trees. We also provide an analogue of the Erdős-Szekeres Theorem to prove that any sufficiently long ascent sequence contains either many copies of the same number or a long increasing subsequence, with a precise bound

    On the sub-permutations of pattern avoiding permutations

    Full text link
    There is a deep connection between permutations and trees. Certain sub-structures of permutations, called sub-permutations, bijectively map to sub-trees of binary increasing trees. This opens a powerful tool set to study enumerative and probabilistic properties of sub-permutations and to investigate the relationships between 'local' and 'global' features using the concept of pattern avoidance. First, given a pattern {\mu}, we study how the avoidance of {\mu} in a permutation {\pi} affects the presence of other patterns in the sub-permutations of {\pi}. More precisely, considering patterns of length 3, we solve instances of the following problem: given a class of permutations K and a pattern {\mu}, we ask for the number of permutations π∈Avn(μ)\pi \in Av_n(\mu) whose sub-permutations in K satisfy certain additional constraints on their size. Second, we study the probability for a generic pattern to be contained in a random permutation {\pi} of size n without being present in the sub-permutations of {\pi} generated by the entry 1≤k≤n1 \leq k \leq n. These theoretical results can be useful to define efficient randomized pattern-search procedures based on classical algorithms of pattern-recognition, while the general problem of pattern-search is NP-complete
    • …
    corecore