6,483 research outputs found

    On the Combinatorial Version of the Slepian-Wolf Problem

    Full text link
    We study the following combinatorial version of the Slepian-Wolf coding scheme. Two isolated Senders are given binary strings XX and YY respectively; the length of each string is equal to nn, and the Hamming distance between the strings is at most αn\alpha n. The Senders compress their strings and communicate the results to the Receiver. Then the Receiver must reconstruct both strings XX and YY. The aim is to minimise the lengths of the transmitted messages. For an asymmetric variant of this problem (where one of the Senders transmits the input string to the Receiver without compression) with deterministic encoding a nontrivial lower bound was found by A.Orlitsky and K.Viswanathany. In our paper we prove a new lower bound for the schemes with syndrome coding, where at least one of the Senders uses linear encoding of the input string. For the combinatorial Slepian-Wolf problem with randomized encoding the theoretical optimum of communication complexity was recently found by the first author, though effective protocols with optimal lengths of messages remained unknown. We close this gap and present a polynomial time randomized protocol that achieves the optimal communication complexity.Comment: 20 pages, 14 figures. Accepted to IEEE Transactions on Information Theory (June 2018

    Pseudorandomness for Regular Branching Programs via Fourier Analysis

    Full text link
    We present an explicit pseudorandom generator for oblivious, read-once, permutation branching programs of constant width that can read their input bits in any order. The seed length is O(log2n)O(\log^2 n), where nn is the length of the branching program. The previous best seed length known for this model was n1/2+o(1)n^{1/2+o(1)}, which follows as a special case of a generator due to Impagliazzo, Meka, and Zuckerman (FOCS 2012) (which gives a seed length of s1/2+o(1)s^{1/2+o(1)} for arbitrary branching programs of size ss). Our techniques also give seed length n1/2+o(1)n^{1/2+o(1)} for general oblivious, read-once branching programs of width 2no(1)2^{n^{o(1)}}, which is incomparable to the results of Impagliazzo et al.Our pseudorandom generator is similar to the one used by Gopalan et al. (FOCS 2012) for read-once CNFs, but the analysis is quite different; ours is based on Fourier analysis of branching programs. In particular, we show that an oblivious, read-once, regular branching program of width ww has Fourier mass at most (2w2)k(2w^2)^k at level kk, independent of the length of the program.Comment: RANDOM 201
    corecore