255,614 research outputs found

    A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications

    Full text link
    Graph is an important data representation which appears in a wide diversity of real-world scenarios. Effective graph analytics provides users a deeper understanding of what is behind the data, and thus can benefit a lot of useful applications such as node classification, node recommendation, link prediction, etc. However, most graph analytics methods suffer the high computation and space cost. Graph embedding is an effective yet efficient way to solve the graph analytics problem. It converts the graph data into a low dimensional space in which the graph structural information and graph properties are maximally preserved. In this survey, we conduct a comprehensive review of the literature in graph embedding. We first introduce the formal definition of graph embedding as well as the related concepts. After that, we propose two taxonomies of graph embedding which correspond to what challenges exist in different graph embedding problem settings and how the existing work address these challenges in their solutions. Finally, we summarize the applications that graph embedding enables and suggest four promising future research directions in terms of computation efficiency, problem settings, techniques and application scenarios.Comment: A 20-page comprehensive survey of graph/network embedding for over 150+ papers till year 2018. It provides systematic categorization of problems, techniques and applications. Accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE). Comments and suggestions are welcomed for continuously improving this surve

    Deep Clustering with a Dynamic Autoencoder: From Reconstruction towards Centroids Construction

    Full text link
    In unsupervised learning, there is no apparent straightforward cost function that can capture the significant factors of variations and similarities. Since natural systems have smooth dynamics, an opportunity is lost if an unsupervised objective function remains static during the training process. The absence of concrete supervision suggests that smooth dynamics should be integrated. Compared to classical static cost functions, dynamic objective functions allow to better make use of the gradual and uncertain knowledge acquired through pseudo-supervision. In this paper, we propose Dynamic Autoencoder (DynAE), a novel model for deep clustering that overcomes a clustering-reconstruction trade-off, by gradually and smoothly eliminating the reconstruction objective function in favor of a construction one. Experimental evaluations on benchmark datasets show that our approach achieves state-of-the-art results compared to the most relevant deep clustering methods

    Kernelized LRR on Grassmann Manifolds for Subspace Clustering

    Full text link
    Low rank representation (LRR) has recently attracted great interest due to its pleasing efficacy in exploring low-dimensional sub- space structures embedded in data. One of its successful applications is subspace clustering, by which data are clustered according to the subspaces they belong to. In this paper, at a higher level, we intend to cluster subspaces into classes of subspaces. This is naturally described as a clustering problem on Grassmann manifold. The novelty of this paper is to generalize LRR on Euclidean space onto an LRR model on Grassmann manifold in a uniform kernelized LRR framework. The new method has many applications in data analysis in computer vision tasks. The proposed models have been evaluated on a number of practical data analysis applications. The experimental results show that the proposed models outperform a number of state-of-the-art subspace clustering methods

    Visualizing Natural Language Descriptions: A Survey

    Full text link
    A natural language interface exploits the conceptual simplicity and naturalness of the language to create a high-level user-friendly communication channel between humans and machines. One of the promising applications of such interfaces is generating visual interpretations of semantic content of a given natural language that can be then visualized either as a static scene or a dynamic animation. This survey discusses requirements and challenges of developing such systems and reports 26 graphical systems that exploit natural language interfaces and addresses both artificial intelligence and visualization aspects. This work serves as a frame of reference to researchers and to enable further advances in the field.Comment: Due to copyright most of the figures only appear in the journal versio

    Transductive Zero-Shot Learning with a Self-training dictionary approach

    Full text link
    As an important and challenging problem in computer vision, zero-shot learning (ZSL) aims at automatically recognizing the instances from unseen object classes without training data. To address this problem, ZSL is usually carried out in the following two aspects: 1) capturing the domain distribution connections between seen classes data and unseen classes data; and 2) modeling the semantic interactions between the image feature space and the label embedding space. Motivated by these observations, we propose a bidirectional mapping based semantic relationship modeling scheme that seeks for crossmodal knowledge transfer by simultaneously projecting the image features and label embeddings into a common latent space. Namely, we have a bidirectional connection relationship that takes place from the image feature space to the latent space as well as from the label embedding space to the latent space. To deal with the domain shift problem, we further present a transductive learning approach that formulates the class prediction problem in an iterative refining process, where the object classification capacity is progressively reinforced through bootstrapping-based model updating over highly reliable instances. Experimental results on three benchmark datasets (AwA, CUB and SUN) demonstrate the effectiveness of the proposed approach against the state-of-the-art approaches

    Incorporating External Knowledge to Answer Open-Domain Visual Questions with Dynamic Memory Networks

    Full text link
    Visual Question Answering (VQA) has attracted much attention since it offers insight into the relationships between the multi-modal analysis of images and natural language. Most of the current algorithms are incapable of answering open-domain questions that require to perform reasoning beyond the image contents. To address this issue, we propose a novel framework which endows the model capabilities in answering more complex questions by leveraging massive external knowledge with dynamic memory networks. Specifically, the questions along with the corresponding images trigger a process to retrieve the relevant information in external knowledge bases, which are embedded into a continuous vector space by preserving the entity-relation structures. Afterwards, we employ dynamic memory networks to attend to the large body of facts in the knowledge graph and images, and then perform reasoning over these facts to generate corresponding answers. Extensive experiments demonstrate that our model not only achieves the state-of-the-art performance in the visual question answering task, but can also answer open-domain questions effectively by leveraging the external knowledge

    Images Don't Lie: Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank

    Full text link
    Search is at the heart of modern e-commerce. As a result, the task of ranking search results automatically (learning to rank) is a multibillion dollar machine learning problem. Traditional models optimize over a few hand-constructed features based on the item's text. In this paper, we introduce a multimodal learning to rank model that combines these traditional features with visual semantic features transferred from a deep convolutional neural network. In a large scale experiment using data from the online marketplace Etsy, we verify that moving to a multimodal representation significantly improves ranking quality. We show how image features can capture fine-grained style information not available in a text-only representation. In addition, we show concrete examples of how image information can successfully disentangle pairs of highly different items that are ranked similarly by a text-only model.Comment: 9 pages, 6 figure

    Knowledge Graph Embeddings and Explainable AI

    Full text link
    Knowledge graph embeddings are now a widely adopted approach to knowledge representation in which entities and relationships are embedded in vector spaces. In this chapter, we introduce the reader to the concept of knowledge graph embeddings by explaining what they are, how they can be generated and how they can be evaluated. We summarize the state-of-the-art in this field by describing the approaches that have been introduced to represent knowledge in the vector space. In relation to knowledge representation, we consider the problem of explainability, and discuss models and methods for explaining predictions obtained via knowledge graph embeddings.Comment: Federico Bianchi, Gaetano Rossiello, Luca Costabello, Matteo Plamonari, Pasquale Minervini, Knowledge Graph Embeddings and Explainable AI. In: Ilaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs for eXplainable AI -- Foundations, Applications and Challenges. Studies on the Semantic Web, IOS Press, Amsterdam, 202

    Face Recognition: A Novel Multi-Level Taxonomy based Survey

    Full text link
    In a world where security issues have been gaining growing importance, face recognition systems have attracted increasing attention in multiple application areas, ranging from forensics and surveillance to commerce and entertainment. To help understanding the landscape and abstraction levels relevant for face recognition systems, face recognition taxonomies allow a deeper dissection and comparison of the existing solutions. This paper proposes a new, more encompassing and richer multi-level face recognition taxonomy, facilitating the organization and categorization of available and emerging face recognition solutions; this taxonomy may also guide researchers in the development of more efficient face recognition solutions. The proposed multi-level taxonomy considers levels related to the face structure, feature support and feature extraction approach. Following the proposed taxonomy, a comprehensive survey of representative face recognition solutions is presented. The paper concludes with a discussion on current algorithmic and application related challenges which may define future research directions for face recognition.Comment: This paper is a preprint of a paper submitted to IET Biometrics. If accepted, the copy of record will be available at the IET Digital Librar

    JECL: Joint Embedding and Cluster Learning for Image-Text Pairs

    Full text link
    We propose JECL, a method for clustering image-caption pairs by training parallel encoders with regularized clustering and alignment objectives, simultaneously learning both representations and cluster assignments. These image-caption pairs arise frequently in high-value applications where structured training data is expensive to produce, but free-text descriptions are common. JECL trains by minimizing the Kullback-Leibler divergence between the distribution of the images and text to that of a combined joint target distribution and optimizing the Jensen-Shannon divergence between the soft cluster assignments of the images and text. Regularizers are also applied to JECL to prevent trivial solutions. Experiments show that JECL outperforms both single-view and multi-view methods on large benchmark image-caption datasets, and is remarkably robust to missing captions and varying data sizes
    • …
    corecore