13 research outputs found

    Fair regression with wasserstein barycenters

    Get PDF
    We study the problem of learning a real-valued function that satisfies the Demographic Parity constraint. It demands the distribution of the predicted output to be independent of the sensitive attribute. We consider the case that the sensitive attribute is available for prediction. We establish a connection between fair regression and optimal transport theory, based on which we derive a close form expression for the optimal fair predictor. Specifically, we show that the distribution of this optimum is the Wasserstein barycenter of the distributions induced by the standard regression function on the sensitive groups. This result offers an intuitive interpretation of the optimal fair prediction and suggests a simple post-processing algorithm to achieve fairness. We establish risk and distribution-free fairness guarantees for this procedure. Numerical experiments indicate that our method is very effective in learning fair models, with a relative increase in error rate that is inferior to the relative gain in fairness

    Fairness guarantee in multi-class classification

    Full text link
    Algorithmic Fairness is an established area of machine learning, willing to reduce the influence of biases in the data. Yet, despite its wide range of applications, very few works consider the multi-class classification setting from the fairness perspective. We extend both definitions of exact and approximate fairness in the case of Demographic Parity to multi-class classification. We specify the corresponding expressions of the optimal fair classifiers. This suggests a plug-in data-driven procedure, for which we establish theoretical guarantees. The enhanced estimator is proved to mimic the behavior of the optimal rule both in terms of fairness and risk. Notably, fairness guarantees are distribution-free. The approach is evaluated on both synthetic and real datasets and turns out to be very effective in decision making with a preset level of unfairness. In addition, our method is competitive with the state-of-the-art in-processing fairlearn in the specific binary classification setting

    Seeking information about assistive technology: Exploring current practices, challenges, and the need for smarter systems

    Get PDF
    Ninety percent of the 1.2 billion people who need assistive technology (AT) do not have access. Information seeking practices directly impact the ability of AT producers, procurers, and providers (AT professionals) to match a user's needs with appropriate AT, yet the AT marketplace is interdisciplinary and fragmented, complicating information seeking. We explored common limitations experienced by AT professionals when searching information to develop solutions for a diversity of users with multi-faceted needs. Through Template Analysis of 22 expert interviews, we find current search engines do not yield the necessary information, or appropriately tailor search results, impacting individuals’ awareness of products and subsequently their availability and the overall effectiveness of AT provision. We present value-based design implications to improve functionality of future AT-information seeking platforms, through incorporating smarter systems to support decision-making and need-matching whilst ensuring ethical standards for disability fairness remain

    Debiasing Machine Learning Models by Using Weakly Supervised Learning

    Full text link
    We tackle the problem of bias mitigation of algorithmic decisions in a setting where both the output of the algorithm and the sensitive variable are continuous. Most of prior work deals with discrete sensitive variables, meaning that the biases are measured for subgroups of persons defined by a label, leaving out important algorithmic bias cases, where the sensitive variable is continuous. Typical examples are unfair decisions made with respect to the age or the financial status. In our work, we then propose a bias mitigation strategy for continuous sensitive variables, based on the notion of endogeneity which comes from the field of econometrics. In addition to solve this new problem, our bias mitigation strategy is a weakly supervised learning method which requires that a small portion of the data can be measured in a fair manner. It is model agnostic, in the sense that it does not make any hypothesis on the prediction model. It also makes use of a reasonably large amount of input observations and their corresponding predictions. Only a small fraction of the true output predictions should be known. This therefore limits the need for expert interventions. Results obtained on synthetic data show the effectiveness of our approach for examples as close as possible to real-life applications in econometrics.Comment: 30 pages, 25 figure

    Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification

    Get PDF
    International audienceWe study the problem of fair binary classification using the notion of Equal Opportunity. It requires the true positive rate to distribute equally across the sensitive groups. Within this setting we show that the fair optimal classifier is obtained by recalibrating the Bayes classifier by a group-dependent threshold. We provide a constructive expression for the threshold. This result motivates us to devise a plug-in classification procedure based on both unlabeled and labeled datasets. While the latter is used to learn the output conditional probability, the former is used for calibration. The overall procedure can be computed in polynomial time and it is shown to be statistically consistent both in terms of the classification error and fairness measure. Finally, we present numerical experiments which indicate that our method is often superior or competitive with the state-of-the-art methods on benchmark datasets
    corecore