7 research outputs found

    Gene Systems Network Inferred from Expression Profiles in Hepatocellular Carcinogenesis by Graphical Gaussian Model

    Get PDF
    Hepatocellular carcinoma (HCC) in a liver with advanced-stage chronic hepatitis C (CHC) is induced by hepatitis C virus, which chronically infects about 170 million people worldwide. To elucidate the associations between gene groups in hepatocellular carcinogenesis, we analyzed the profiles of the genes characteristically expressed in the CHC and HCC cell stages by a statistical method for inferring the network between gene systems based on the graphical Gaussian model. A systematic evaluation of the inferred network in terms of the biological knowledge revealed that the inferred network was strongly involved in the known gene-gene interactions with high significance (P<10−4), and that the clusters characterized by different cancer-related responses were associated with those of the gene groups related to metabolic pathways and morphological events. Although some relationships in the network remain to be interpreted, the analyses revealed a snapshot of the orchestrated expression of cancer-related groups and some pathways related with metabolisms and morphological events in hepatocellular carcinogenesis, and thus provide possible clues on the disease mechanism and insights that address the gap between molecular and clinical assessments

    Differential Regulatory Analysis Based on Coexpression Network in Cancer Research

    Get PDF

    Detection of network structure changes by graphical chain modeling: A case study of hepatitis C virus-related hepatocellular carcinoma

    Get PDF
    One of the most characteristic features of biological molecular networks is that the network structure itself changes, depending on the cellular environment. Indeed, activated molecules show a variety of responses to distinctive cell conditions, and subsequently the network structures of active molecules also change. Here we present an approach to trace the network structure changes by using the graphical chain model developed from the gene expression data. The previous procedure for applying the graphical chain model to the expression profiles of a limited number of genes has been improved to analyze the entire set of genes. Furthermore, the chain model has been rearranged according to the association strength, and was scrutinized to identify the candidates of essential gene-gene relationships for the network changes, by using the path consistency algorithm. The improved procedure was applied to the expression profiles of 8,427 genes, which were measured in two distinctive stages of liver cancer progression. As a result, the chain model of the 18 gene cluster relationships with strong associations was inferred, in which the coordination of clusters was described in the cell stage progression, and the gene-gene relationships between known cancer-related genes causing the progression were further refined. Thus, the present procedure is a useful method to model the network structure changes in the cell stage progression, and to clarify the gene candidates for the progression. ©2009 IEEE

    Detection of network structure changes by graphical chain modeling: a case study of hepatitis C virus-related hepatocellular carcinoma

    Full text link

    Gene expression profiling of hepatitis B- and hepatitis C-related hepatocellular carcinoma using graphical Gaussian modeling

    Get PDF
    13301乙第2051号博士(医学)金沢大学博士論文本文Full 以下に掲載:Genomics 101(4) pp.238-248 2013. ELESEVIER. 共著者:Teruyuki Ueda, Masao Honda, Katsuhisa Horimoto, Sachiyo Aburatani, Shigeru Saito, Taro Yamashita, Yoshio Sakai, Mikiko Nakamura, Hajime Takatori, Hajime Sunagozaka, Shuichi Kanek
    corecore