2,557 research outputs found

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure

    Kernel discriminant analysis and clustering with parsimonious Gaussian process models

    Full text link
    This work presents a family of parsimonious Gaussian process models which allow to build, from a finite sample, a model-based classifier in an infinite dimensional space. The proposed parsimonious models are obtained by constraining the eigen-decomposition of the Gaussian processes modeling each class. This allows in particular to use non-linear mapping functions which project the observations into infinite dimensional spaces. It is also demonstrated that the building of the classifier can be directly done from the observation space through a kernel function. The proposed classification method is thus able to classify data of various types such as categorical data, functional data or networks. Furthermore, it is possible to classify mixed data by combining different kernels. The methodology is as well extended to the unsupervised classification case. Experimental results on various data sets demonstrate the effectiveness of the proposed method

    Data Visualization, Dimensionality Reduction, and Data Alignment via Manifold Learning

    Get PDF
    The high dimensionality of modern data introduces significant challenges in descriptive and exploratory data analysis. These challenges gave rise to extensive work on dimensionality reduction and manifold learning aiming to provide low dimensional representations that preserve or uncover intrinsic patterns and structures in the data. In this thesis, we expand the current literature in manifold learning developing two methods called DIG (Dynamical Information Geometry) and GRAE (Geometry Regularized Autoencoders). DIG is a method capable of finding low-dimensional representations of high-frequency multivariate time series data, especially suited for visualization. GRAE is a general framework which splices the well-established machinery from kernel manifold learning methods to recover a sensitive geometry, alongside the parametric structure of autoencoders. Manifold learning can also be useful to study data collected from different measurement instruments, conditions, or protocols of the same underlying system. In such cases the data is acquired in a multi-domain representation. The last two Chapters of this thesis are devoted to two new methods capable of aligning multi-domain data, leveraging their geometric structure alongside limited common information. First, we present DTA (Diffusion Transport Alignment), a semi-supervised manifold alignment method that exploits prior one-to-one correspondence knowledge between distinct data views and finds an aligned common representation. And finally, we introduce MALI (Manifold Alignment with Label Information). Here we drop the one-to-one prior correspondences assumption, since in many scenarios such information can not be provided, either due to the nature of the experimental design, or it becomes extremely costly. Instead, MALI only needs side-information in the form of discrete labels/classes present in both domains

    Self-supervised learning in non-small cell lung cancer discovers novel morphological clusters linked to patient outcome and molecular phenotypes

    Full text link
    Histopathological images provide the definitive source of cancer diagnosis, containing information used by pathologists to identify and subclassify malignant disease, and to guide therapeutic choices. These images contain vast amounts of information, much of which is currently unavailable to human interpretation. Supervised deep learning approaches have been powerful for classification tasks, but they are inherently limited by the cost and quality of annotations. Therefore, we developed Histomorphological Phenotype Learning, an unsupervised methodology, which requires no annotations and operates via the self-discovery of discriminatory image features in small image tiles. Tiles are grouped into morphologically similar clusters which appear to represent recurrent modes of tumor growth emerging under natural selection. These clusters have distinct features which can be identified using orthogonal methods. Applied to lung cancer tissues, we show that they align closely with patient outcomes, with histopathologically recognised tumor types and growth patterns, and with transcriptomic measures of immunophenotype
    • …
    corecore