12,876 research outputs found

    Gender Detection on Social Networks using Ensemble Deep Learning

    Full text link
    Analyzing the ever-increasing volume of posts on social media sites such as Facebook and Twitter requires improved information processing methods for profiling authorship. Document classification is central to this task, but the performance of traditional supervised classifiers has degraded as the volume of social media has increased. This paper addresses this problem in the context of gender detection through ensemble classification that employs multi-model deep learning architectures to generate specialized understanding from different feature spaces

    Co-training for Demographic Classification Using Deep Learning from Label Proportions

    Full text link
    Deep learning algorithms have recently produced state-of-the-art accuracy in many classification tasks, but this success is typically dependent on access to many annotated training examples. For domains without such data, an attractive alternative is to train models with light, or distant supervision. In this paper, we introduce a deep neural network for the Learning from Label Proportion (LLP) setting, in which the training data consist of bags of unlabeled instances with associated label distributions for each bag. We introduce a new regularization layer, Batch Averager, that can be appended to the last layer of any deep neural network to convert it from supervised learning to LLP. This layer can be implemented readily with existing deep learning packages. To further support domains in which the data consist of two conditionally independent feature views (e.g. image and text), we propose a co-training algorithm that iteratively generates pseudo bags and refits the deep LLP model to improve classification accuracy. We demonstrate our models on demographic attribute classification (gender and race/ethnicity), which has many applications in social media analysis, public health, and marketing. We conduct experiments to predict demographics of Twitter users based on their tweets and profile image, without requiring any user-level annotations for training. We find that the deep LLP approach outperforms baselines for both text and image features separately. Additionally, we find that co-training algorithm improves image and text classification by 4% and 8% absolute F1, respectively. Finally, an ensemble of text and image classifiers further improves the absolute F1 measure by 4% on average

    Group-level Emotion Recognition using Transfer Learning from Face Identification

    Full text link
    In this paper, we describe our algorithmic approach, which was used for submissions in the fifth Emotion Recognition in the Wild (EmotiW 2017) group-level emotion recognition sub-challenge. We extracted feature vectors of detected faces using the Convolutional Neural Network trained for face identification task, rather than traditional pre-training on emotion recognition problems. In the final pipeline an ensemble of Random Forest classifiers was learned to predict emotion score using available training set. In case when the faces have not been detected, one member of our ensemble extracts features from the whole image. During our experimental study, the proposed approach showed the lowest error rate when compared to other explored techniques. In particular, we achieved 75.4% accuracy on the validation data, which is 20% higher than the handcrafted feature-based baseline. The source code using Keras framework is publicly available.Comment: 5 pages, 3 figures, accepted for publication at ICMI17 (EmotiW Grand Challenge

    Adversarial Removal of Demographic Attributes from Text Data

    Full text link
    Recent advances in Representation Learning and Adversarial Training seem to succeed in removing unwanted features from the learned representation. We show that demographic information of authors is encoded in -- and can be recovered from -- the intermediate representations learned by text-based neural classifiers. The implication is that decisions of classifiers trained on textual data are not agnostic to -- and likely condition on -- demographic attributes. When attempting to remove such demographic information using adversarial training, we find that while the adversarial component achieves chance-level development-set accuracy during training, a post-hoc classifier, trained on the encoded sentences from the first part, still manages to reach substantially higher classification accuracies on the same data. This behavior is consistent across several tasks, demographic properties and datasets. We explore several techniques to improve the effectiveness of the adversarial component. Our main conclusion is a cautionary one: do not rely on the adversarial training to achieve invariant representation to sensitive features
    corecore