771,958 research outputs found

    Determination of Trace Levels of Uranium and Thorium in High Purity Gadolinium Sulfate Using ICP-MS with Solid-Phase Chromatographic Extraction Resin

    Full text link
    The new Super-Kamiokande-Gadolinium (SK-Gd) project is an upgrade of the Super-Kamiokande (SK) detector. In the SK-Gd project, 0.2\% Gd2_2(SO4_4)3_3 is loaded into the 50 kton water tank of the SK. One of the main purposes of the project is to discover Supernova Relic Neutrinos. Neutrino measurements and proton decay searches will also be performed in the SK-Gd. In order to measure solar neutrinos with a low energy threshold of \sim3.5 MeV in the SK-Gd, the main radioactive contaminations, 238^{238}U and 232^{232}Th, in Gd2_2(SO4_4)3_3{\cdot}8H2_2O, should be minimized before loading. Our maximum levels for U and Th are 5 mBq (U)/kg (Gd2_2(SO4_4)3_3{\cdot}8H2_2O) and 0.05 mBq (Th)/kg (Gd2_2(SO4_4)3_3{\cdot}8H2_2O). In order to measure such low concentrations of U and Th in Gd2_2(SO4_4)3_3{\cdot}8H2_2O, we developed the solid-phase extraction technique. Using this method, about 90\% or more U and Th could be efficiently extracted while Gd was reduced by a factor of about 10410^{4}. This allowed these radioactivity contaminations to be measured precisely as 0.04 mBq/kg (Gd2_2(SO4_4)3_3{\cdot}8H2_2O) for U and 0.01 mBq/kg (Gd2_2(SO4_4)3_3{\cdot}8H2_2O) for Th. We measured three pure Gd2_2(SO4_4)3_3{\cdot}8H2_2O samples using this method and estimated that the purest one contained <0.04<0.04 mBq (U)/kg (Gd2_2(SO4_4)3_3{\cdot}8H2_2O) and 0.06 ±\pm 0.01 mBq (Th)/kg (Gd2_2(SO4_4)3_3{\cdot}8H2_2O) by ICP-MS.Comment: 13 pages, 11 figure

    FeNi-based magnetoimpedance multilayers: Tailoring of the softness by magnetic spacers

    Full text link
    The microstructure and magnetic properties of sputtered permalloy films and FeNi(170 nm)/X/FeNi(170 nm) (X=Co, Fe, Gd, Gd-Co) sandwiches were studied. Laminating of the thick FeNi film with various spacers was done in order to control the magnetic softness of FeNi-based multilayers. In contrast to the Co and Fe spacers, Gd and Gd-Co magnetic spacers improved the softness of the FeNi/X/FeNi sandwiches. The magnetoimpedance responses were measured for [FeNi/Ti(6 nm)] 2/FeNi and [FeNi/Gd(2 nm)] 2/FeNi multilayers in a frequency range of 1-500 MHz: for all frequencies under consideration the highest magnetoimpedance variation was observed for [FeNi/Gd(2 nm)] 2/FeNi multilayers. © 2012 American Institute of Physics

    Soft x-ray magnetic circular dichroism study on Gd-doped EuO thin films

    Full text link
    We report on the growth and characterization of ferromagnetic Gd-doped EuO thin films. We prepared samples with Gd concentrations up to 11% by means of molecular beam epitaxy under distillation conditions, which allows a very precise control of the doping concentration and oxygen stoichiometry. Using soft x-ray magnetic circular dichroism at the Eu and Gd M4,5 edges, we found that the Curie temperature ranged from 69 K for pure stoichiometric EuO to about 170 K for the film with the optimal Gd doping of around 4%. We also show that the Gd magnetic moment couples ferromagnetically to that of Eu.Comment: 4 pages, 4 figure

    Low-lying states in even Gd isotopes studied with five-dimensional collective Hamiltonian based on covariant density functional theory

    Full text link
    Five-dimensional collective Hamiltonian based on the covariant density functional theory has been applied to study the the low-lying states of even-even 148162^{148-162}Gd isotopes. The shape evolution from 148^{148}Gd to 162^{162}Gd is presented. The experimental energy spectra and intraband B(E2)B(E2) transition probabilities for the 148162^{148-162}Gd isotopes are reproduced by the present calculations. The relative B(E2)B(E2) ratios in present calculations are also compared with the available interacting boson model results and experimental data. It is found that the occupations of neutron 1i13/21i_{13/2} orbital result in the well-deformed prolate shape, and are essential for Gd isotopes.Comment: 11pages, 10figure

    Microstructure, magneto-transport and magnetic properties of Gd-doped magnetron-sputtered amorphous carbon

    Full text link
    The magnetic rare earth element gadolinium (Gd) was doped into thin films of amorphous carbon (hydrogenated \textit{a}-C:H, or hydrogen-free \textit{a}-C) using magnetron co-sputtering. The Gd acted as a magnetic as well as an electrical dopant, resulting in an enormous negative magnetoresistance below a temperature (TT'). Hydrogen was introduced to control the amorphous carbon bonding structure. High-resolution electron microscopy, ion-beam analysis and Raman spectroscopy were used to characterize the influence of Gd doping on the \textit{a-}Gdx_xC1x_{1-x}(:Hy_y) film morphology, composition, density and bonding. The films were largely amorphous and homogeneous up to xx=22.0 at.%. As the Gd doping increased, the sp2sp^{2}-bonded carbon atoms evolved from carbon chains to 6-member graphitic rings. Incorporation of H opened up the graphitic rings and stabilized a sp2sp^{2}-rich carbon-chain random network. The transport properties not only depended on Gd doping, but were also very sensitive to the sp2sp^{2} ordering. Magnetic properties, such as the spin-glass freezing temperature and susceptibility, scaled with the Gd concentration.Comment: 9 figure

    The percutaneous absorption of soman in a damaged skin porcine model and the evaluation of WoundStat™ as a topical decontaminant

    Get PDF
    PURPOSE: The aim of this study was to evaluate a candidate haemostat (WoundStat™), down-selected from previous in vitro studies, for efficacy as a potential skin decontaminant against the chemical warfare agent pinacoyl methylfluorophosphonate (Soman, GD) using an in vivo pig model. MATERIALS AND METHODS: An area of approximately 3 cm2 was dermatomed from the dorsal ear skin to a nominal depth of 100 µm. A discrete droplet of 14C-GD (300 µg kg-1) was applied directly onto the surface of the damaged skin at the centre of the dosing site. Animals assigned to the treatment group were given a 2 g application of WoundStat™ 30 s after GD challenge. The decontamination efficacy of WoundStat™ against GD was measured by the direct quantification of the distribution of 14C-GD, as well as routine determination of whole blood cholinesterase and physiological measurements. RESULTS: WoundStat™ sequestered approximately 70% of the applied 14C-GD. Internal radiolabel recovery from treated animals was approximately 1% of the initially applied dose. Whole blood cholinesterase levels decreased to less than 10% of the original value by 15 min post WoundStat™ treatment and gradually decreased until the onset of apnoea or until euthanasia. All treated animals showed signs of GD intoxication that could be grouped into early (mastication, fasciculations and tremor), intermediate (miosis, salivation and nasal secretions) and late onset (lacrimation, body spasm and apnoea) effects. Two of the six WoundStat™ treated animals survived the study duration. CONCLUSIONS: The current study has shown that the use of WoundStat™ as a decontaminant on damaged pig ear skin was unable to fully protect against GD toxicity. Importantly, the findings indicate that the use of WoundStat™ in GD contaminated wounds would not exacerbate GD toxicity. These data suggest that absorbent haemostatic products may offer some limited functionality as wound decontaminants.Peer reviewedFinal Accepted Versio
    corecore