771,958 research outputs found
Recommended from our members
Alterations in T1 of normal and reperfused infarcted myocardium after Gd-BOPTA versus GD-DTPA on inversion recovery EPI.
This study tested whether Gd-BOPTA/Dimeg or Gd-DTPA exerts greater relaxation enhancement for blood and reperfused infarcted myocardium. Relaxivity of Gd-BOPTA is increased by weak binding to serum albumin. Thirty-six rats were subjected to reperfused infarction before contrast (doses = 0.05, 0.1, and 0.2 mmol/kg). delta R1 was repeatedly measured over 30 min. Gd-BOPTA caused greater delta R1 for blood and myocardium than did Gd-DTPA; clearance of both agents from normal- and infarcted myocardium was similar to blood clearance; plots of delta R1 myocardium/delta R1 blood showed equilibrium phase contrast distribution. Fractional contrast agent distribution volumes were approximately 0.24 for both agents in normal myocardium, 0.98 and 1.6 for Gd-DTPA and Gd-BOPTA, respectively, in reperfused infarction. The high value for Gd-BOPTPA was ascribed to greater relaxivity in infarction versus blood. It was concluded that Gd-BOPTA/Dimeg causes a greater delta R1 than Gd-DTPA in regions which contain serum albumin
Determination of Trace Levels of Uranium and Thorium in High Purity Gadolinium Sulfate Using ICP-MS with Solid-Phase Chromatographic Extraction Resin
The new Super-Kamiokande-Gadolinium (SK-Gd) project is an upgrade of the
Super-Kamiokande (SK) detector. In the SK-Gd project, 0.2\% Gd(SO)
is loaded into the 50 kton water tank of the SK. One of the main purposes of
the project is to discover Supernova Relic Neutrinos. Neutrino measurements and
proton decay searches will also be performed in the SK-Gd. In order to measure
solar neutrinos with a low energy threshold of 3.5 MeV in the SK-Gd, the
main radioactive contaminations, U and Th, in
Gd(SO)8HO, should be minimized before loading. Our
maximum levels for U and Th are 5 mBq (U)/kg (Gd(SO)8HO)
and 0.05 mBq (Th)/kg (Gd(SO)8HO).
In order to measure such low concentrations of U and Th in
Gd(SO)8HO, we developed the solid-phase extraction
technique. Using this method, about 90\% or more U and Th could be efficiently
extracted while Gd was reduced by a factor of about . This allowed
these radioactivity contaminations to be measured precisely as 0.04 mBq/kg
(Gd(SO)8HO) for U and 0.01 mBq/kg
(Gd(SO)8HO) for Th. We measured three pure
Gd(SO)8HO samples using this method and estimated that
the purest one contained mBq (U)/kg (Gd(SO)8HO)
and 0.06 0.01 mBq (Th)/kg (Gd(SO)8HO) by ICP-MS.Comment: 13 pages, 11 figure
FeNi-based magnetoimpedance multilayers: Tailoring of the softness by magnetic spacers
The microstructure and magnetic properties of sputtered permalloy films and FeNi(170 nm)/X/FeNi(170 nm) (X=Co, Fe, Gd, Gd-Co) sandwiches were studied. Laminating of the thick FeNi film with various spacers was done in order to control the magnetic softness of FeNi-based multilayers. In contrast to the Co and Fe spacers, Gd and Gd-Co magnetic spacers improved the softness of the FeNi/X/FeNi sandwiches. The magnetoimpedance responses were measured for [FeNi/Ti(6 nm)] 2/FeNi and [FeNi/Gd(2 nm)] 2/FeNi multilayers in a frequency range of 1-500 MHz: for all frequencies under consideration the highest magnetoimpedance variation was observed for [FeNi/Gd(2 nm)] 2/FeNi multilayers. © 2012 American Institute of Physics
Soft x-ray magnetic circular dichroism study on Gd-doped EuO thin films
We report on the growth and characterization of ferromagnetic Gd-doped EuO
thin films. We prepared samples with Gd concentrations up to 11% by means of
molecular beam epitaxy under distillation conditions, which allows a very
precise control of the doping concentration and oxygen stoichiometry. Using
soft x-ray magnetic circular dichroism at the Eu and Gd M4,5 edges, we found
that the Curie temperature ranged from 69 K for pure stoichiometric EuO to
about 170 K for the film with the optimal Gd doping of around 4%. We also show
that the Gd magnetic moment couples ferromagnetically to that of Eu.Comment: 4 pages, 4 figure
Low-lying states in even Gd isotopes studied with five-dimensional collective Hamiltonian based on covariant density functional theory
Five-dimensional collective Hamiltonian based on the covariant density
functional theory has been applied to study the the low-lying states of
even-even Gd isotopes. The shape evolution from Gd to
Gd is presented. The experimental energy spectra and intraband
transition probabilities for the Gd isotopes are reproduced by the
present calculations. The relative ratios in present calculations are
also compared with the available interacting boson model results and
experimental data. It is found that the occupations of neutron
orbital result in the well-deformed prolate shape, and are essential for Gd
isotopes.Comment: 11pages, 10figure
Microstructure, magneto-transport and magnetic properties of Gd-doped magnetron-sputtered amorphous carbon
The magnetic rare earth element gadolinium (Gd) was doped into thin films of
amorphous carbon (hydrogenated \textit{a}-C:H, or hydrogen-free \textit{a}-C)
using magnetron co-sputtering. The Gd acted as a magnetic as well as an
electrical dopant, resulting in an enormous negative magnetoresistance below a
temperature (). Hydrogen was introduced to control the amorphous carbon
bonding structure. High-resolution electron microscopy, ion-beam analysis and
Raman spectroscopy were used to characterize the influence of Gd doping on the
\textit{a-}GdC(:H) film morphology, composition, density and
bonding. The films were largely amorphous and homogeneous up to =22.0 at.%.
As the Gd doping increased, the -bonded carbon atoms evolved from
carbon chains to 6-member graphitic rings. Incorporation of H opened up the
graphitic rings and stabilized a -rich carbon-chain random network. The
transport properties not only depended on Gd doping, but were also very
sensitive to the ordering. Magnetic properties, such as the spin-glass
freezing temperature and susceptibility, scaled with the Gd concentration.Comment: 9 figure
The percutaneous absorption of soman in a damaged skin porcine model and the evaluation of WoundStat™ as a topical decontaminant
PURPOSE: The aim of this study was to evaluate a candidate haemostat (WoundStat™), down-selected from previous in vitro studies, for efficacy as a potential skin decontaminant against the chemical warfare agent pinacoyl methylfluorophosphonate (Soman, GD) using an in vivo pig model. MATERIALS AND METHODS: An area of approximately 3 cm2 was dermatomed from the dorsal ear skin to a nominal depth of 100 µm. A discrete droplet of 14C-GD (300 µg kg-1) was applied directly onto the surface of the damaged skin at the centre of the dosing site. Animals assigned to the treatment group were given a 2 g application of WoundStat™ 30 s after GD challenge. The decontamination efficacy of WoundStat™ against GD was measured by the direct quantification of the distribution of 14C-GD, as well as routine determination of whole blood cholinesterase and physiological measurements. RESULTS: WoundStat™ sequestered approximately 70% of the applied 14C-GD. Internal radiolabel recovery from treated animals was approximately 1% of the initially applied dose. Whole blood cholinesterase levels decreased to less than 10% of the original value by 15 min post WoundStat™ treatment and gradually decreased until the onset of apnoea or until euthanasia. All treated animals showed signs of GD intoxication that could be grouped into early (mastication, fasciculations and tremor), intermediate (miosis, salivation and nasal secretions) and late onset (lacrimation, body spasm and apnoea) effects. Two of the six WoundStat™ treated animals survived the study duration. CONCLUSIONS: The current study has shown that the use of WoundStat™ as a decontaminant on damaged pig ear skin was unable to fully protect against GD toxicity. Importantly, the findings indicate that the use of WoundStat™ in GD contaminated wounds would not exacerbate GD toxicity. These data suggest that absorbent haemostatic products may offer some limited functionality as wound decontaminants.Peer reviewedFinal Accepted Versio
- …
