1,520 research outputs found

    Beyond ‘Interaction’: How to Understand Social Effects on Social Cognition

    Get PDF
    In recent years, a number of philosophers and cognitive scientists have advocated for an ‘interactive turn’ in the methodology of social-cognition research: to become more ecologically valid, we must design experiments that are interactive, rather than merely observational. While the practical aim of improving ecological validity in the study of social cognition is laudable, we think that the notion of ‘interaction’ is not suitable for this task: as it is currently deployed in the social cognition literature, this notion leads to serious conceptual and methodological confusion. In this paper, we tackle this confusion on three fronts: 1) we revise the ‘interactionist’ definition of interaction; 2) we demonstrate a number of potential methodological confounds that arise in interactive experimental designs; and 3) we show that ersatz interactivity works just as well as the real thing. We conclude that the notion of ‘interaction’, as it is currently being deployed in this literature, obscures an accurate understanding of human social cognition

    Language processing skills linked to FMR1 variation: A study of gaze-language coordination during rapid automatized naming among women with the FMR1 premutation

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.The FMR1 premutation (PM) is relatively common in the general population. Evidence suggests that PM carriers may exhibit subtle differences in specific cognitive and language abilities. This study examined potential mechanisms underlying such differences through the study of gaze and language coordination during a language processing task (rapid automatized naming; RAN) among female carriers of the FMR1 PM. RAN taps a complex set of underlying neuropsychological mechanisms, with breakdowns implicating processing disruptions in fundamental skills that support higher order language and executive functions, making RAN (and analysis of gaze/language coordination during RAN) a potentially powerful paradigm for revealing the phenotypic expression of the FMR1 PM. Forty-eight PM carriers and 56 controls completed RAN on an eye tracker, where they serially named arrays of numbers, letters, colors, and objects. Findings revealed a pattern of inefficient language processing in the PM group, including a greater number of eye fixations (namely, visual regressions) and reduced eye-voice span (i.e., the eyes’ lead over the voice) relative to controls. Differences were driven by performance in the latter half of the RAN arrays, when working memory and processing load are the greatest, implicating executive skills. RAN deficits were associated with broader social-communicative difficulties among PM carriers, and with FMR1-related molecular genetic variation (higher CGG repeat length, lower activation ratio, and increased levels of the fragile X mental retardation protein; FMRP). Findings contribute to an understanding of the neurocognitive profile of PM carriers and indicate specific gene-behavior associations that implicate the role of the FMR1 gene in language-related processes.NIH R01DC010191NIH R01MH091131NIH P30 HD0311

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Context effects on memory retrieval:Theory and applications

    Get PDF

    Context effects on memory retrieval:Theory and applications

    Get PDF

    Bilateral gain control; an "innate predisposition" for all sorts of things.

    Get PDF
    Empirical studies have revealed remarkable perceptual organization in neonates. Newborn behavioral distinctions have often been interpreted as implying functionally specific modular adaptations, and are widely cited as evidence supporting the nativist agenda. In this theoretical paper, we approach newborn perception and attention from an embodied, developmental perspective. At the mechanistic level, we argue that a generative mechanism based on mutual gain control between bilaterally corresponding points may underly a number of functionally defined "innate predispositions" related to spatial-configural perception. At the computational level, bilateral gain control implements beamforming, which enables spatial-configural tuning at the front end sampling stage. At the psychophysical level, we predict that selective attention in newborns will favor contrast energy which projects to bilaterally corresponding points on the neonate subject's sensor array. The current work extends and generalizes previous work to formalize the bilateral correlation model of newborn attention at a high level, and demonstrate in minimal agent-based simulations how bilateral gain control can enable a simple, robust and "social" attentional bias

    Brains studying brains: look before you think in vision

    Get PDF
    Using our own brains to study our brains is extraordinary. For example, in vision this makes us naturally blind to our own blindness, since our impression of seeing our world clearly is consistent with our ignorance of what we do not see. Our brain employs its 'conscious' part to reason and make logical deductions using familiar rules and past experience. However, human vision employs many 'subconscious' brain parts that follow rules alien to our intuition. Our blindness to our unknown unknowns and our presumptive intuitions easily lead us astray in asking and formulating theoretical questions, as witnessed in many unexpected and counter-intuitive difficulties and failures encountered by generations of scientists. We should therefore pay a more than usual amount of attention and respect to experimental data when studying our brain. I show that this can be productive by reviewing two vision theories that have provided testable predictions and surprising insights
    corecore