54,776 research outputs found
Local well-posedness of nonlocal Burgers equations
International audienceThis paper is concerned with nonlocal generalizations of the inviscid Burgers equation arising as amplitude equations for weakly nonlinear surface waves. Under homogeneity and stability assumptions on the involved kernel it is shown that the Cauchy problem is locally well-posed in , and a blow-up criterion is derived. The proof is based on a priori estimates without loss of derivatives, and on a regularization of both the equation and the initial data
Amplitude equations for weakly nonlinear surface waves in variational problems
Among hyperbolic Initial Boundary Value Problems (IBVP), those coming from a
variational principle 'generically' admit linear surface waves, as was shown by
Serre [J. Funct. Anal. 2006]. At the weakly nonlinear level, the behavior of
surface waves is expected to be governed by an amplitude equation that can be
derived by means of a formal asymptotic expansion. Amplitude equations for
weakly nonlinear surface waves were introduced by Lardner [Int. J. Engng Sci.
1983], Parker and co-workers [J. Elasticity 1985] in the framework of
elasticity, and by Hunter [Contemp. Math. 1989] for abstract hyperbolic
problems. They consist of nonlocal evolution equations involving a complicated,
bilinear Fourier multiplier in the direction of propagation along the boundary.
It was shown by the authors in an earlier work [Arch. Ration. Mech. Anal. 2012]
that this multiplier, or kernel, inherits some algebraic properties from the
original IBVP. These properties are crucial for the (local) well-posedness of
the amplitude equation, as shown together with Tzvetkov [Adv. Math., 2011].
Properties of amplitude equations are revisited here in a somehow simpler way,
for surface waves in a variational setting. Applications include various
physical models, from elasticity of course to the director-field system for
liquid crystals introduced by Saxton [Contemp. Math. 1989] and studied by
Austria and Hunter [Commun. Inf. Syst. 2013]. Similar properties are eventually
shown for the amplitude equation associated with surface waves at reversible
phase boundaries in compressible fluids, thus completing a work initiated by
Benzoni-Gavage and Rosini [Comput. Math. Appl. 2009]
Metabolic Effects of Bariatric Surgery in Mouse Models of Circadian Disruption
Background/Objectives:
Mounting evidence supports a link between circadian disruption and metabolic disease. Humans with circadian disruption (for example, night-shift workers) have an increased risk of obesity and cardiometabolic diseases compared with the non-disrupted population. However, it is unclear whether the obesity and obesity-related disorders associated with circadian disruption respond to therapeutic treatments as well as individuals with other types of obesity. Subjects/Methods:
Here, we test the effectiveness of the commonly used bariatric surgical procedure, Vertical Sleeve Gastrectomy (VSG), in mouse models of genetic and environmental circadian disruption. Results:
VSG led to a reduction in body weight and fat mass in both ClockΔ19 mutant and constant-light mouse models (PP\u3e0.05). Within circadian-disrupted models, VSG also led to improved glucose tolerance and lipid handling (P\u3c0.05). Conclusions:
Together these data demonstrate that VSG is an effective treatment for the obesity associated with circadian disruption, and that the potent effects of bariatric surgery are orthogonal to circadian biology. However, as the effects of bariatric surgery are independent of circadian disruption, VSG cannot be considered a cure for circadian disruption. These data have important implications for circadian-disrupted obese patients. Moreover, these results reveal new information about the metabolic pathways governing the effects of bariatric surgery as well as of circadian disruption
Role of Cytolethal Distending Toxin in Altered Stool Form and Bowel Phenotypes in a Rat Model of Post-infectious Irritable Bowel Syndrome.
Background/aimsCampylobacter jejuni infection is a leading cause of acute gastroenteritis, which is a trigger for post-infectious irritable bowel syndrome (PI-IBS). Cytolethal distending toxin (CDT) is expressed by enteric pathogens that cause PI-IBS. We used a rat model of PI-IBS to investigate the role of CDT in long-term altered stool form and bowel phenotypes.MethodsAdult Sprague-Dawley rats were gavaged with wildtype C. jejuni (C+), a C. jejunicdtB knockout (CDT-) or saline vehicle (controls). Four months after gavage, stool from 3 consecutive days was assessed for stool form and percent wet weight. Rectal tissue was analyzed for intraepithelial lymphocytes, and small intestinal tissue was stained with anti-c-kit for deep muscular plexus interstitial cells of Cajal (DMP-ICC).ResultsAll 3 groups showed similar colonization and clearance parameters. Average 3-day stool dry weights were similar in all 3 groups, but day-to-day variability in stool form and stool dry weight were significantly different in the C+ group vs both controls (P < 0.01) and the CDT- roup (P < 0.01), but were not different in the CDT- vs controls. Similarly, rectal lymphocytes were significantly higher after C. jejuni (C+) infection vs both controls (P < 0.01) and CDT-exposed rats (P < 0.05). The counts in the latter 2 groups were not significantly different. Finally, c-kit staining revealed that DMP-ICC were reduced only in rats exposed to wildtype C. jejuni.ConclusionsIn this rat model of PI-IBS, CDT appears to play a role in the development of chronic altered bowel patterns, mild chronic rectal inflammation and reduction in DMP-ICC
α8β1 integrin regulates nutrient absorption through an Mfge8-PTEN dependent mechanism.
Coordinated gastrointestinal smooth muscle contraction is critical for proper nutrient absorption and is altered in a number of medical disorders. In this work, we demonstrate a critical role for the RGD-binding integrin α8β1 in promoting nutrient absorption through regulation of gastrointestinal motility. Smooth muscle-specific deletion and antibody blockade of α8 in mice result in enhanced gastric antral smooth muscle contraction, more rapid gastric emptying, and more rapid transit of food through the small intestine leading to malabsorption of dietary fats and carbohydrates as well as protection from weight gain in a diet-induced model of obesity. Mechanistically, ligation of α8β1 by the milk protein Mfge8 reduces antral smooth muscle contractile force by preventing RhoA activation through a PTEN-dependent mechanism. Collectively, our results identify a role for α8β1 in regulating gastrointestinal motility and identify α8 as a potential target for disorders characterized by hypo- or hyper-motility
Recombinant Incretin-Secreting Microbe Improves Metabolic Dysfunction in High-Fat Diet Fed Rodents
peer-reviewedThe gut hormone glucagon-like peptide (GLP)-1 and its analogues represent a new generation of anti-diabetic drugs, which have also demonstrated propensity to modulate host lipid metabolism. Despite this, drugs of this nature are currently limited to intramuscular administration routes due to intestinal degradation. The aim of this study was to design a recombinant microbial delivery vector for a GLP-1 analogue and assess the efficacy of the therapeutic in improving host glucose, lipid and cholesterol metabolism in diet induced obese rodents. Diet-induced obese animals received either Lactobacillus paracasei NFBC 338 transformed to express a long-acting analogue of GLP-1 or the isogenic control microbe which solely harbored the pNZ44 plasmid. Short-term GLP-1 microbe intervention in rats reduced serum low-density lipoprotein cholesterol, triglycerides and triglyceride-rich lipoprotein cholesterol substantially. Conversely, extended GLP-1 microbe intervention improved glucose-dependent insulin secretion, glucose metabolism and cholesterol metabolism, compared to the high-fat control group. Interestingly, the microbe significantly attenuated the adiposity associated with the model and altered the serum lipidome, independently of GLP-1 secretion. These data indicate that recombinant incretin-secreting microbes may offer a novel and safe means of managing cholesterol metabolism and diet induced dyslipidaemia, as well as insulin sensitivity in metabolic dysfunction
A subcutaneous adipose tissue-liver signalling axis controls hepatic gluconeogenesis.
The search for effective treatments for obesity and its comorbidities is of prime importance. We previously identified IKK-ε and TBK1 as promising therapeutic targets for the treatment of obesity and associated insulin resistance. Here we show that acute inhibition of IKK-ε and TBK1 with amlexanox treatment increases cAMP levels in subcutaneous adipose depots of obese mice, promoting the synthesis and secretion of the cytokine IL-6 from adipocytes and preadipocytes, but not from macrophages. IL-6, in turn, stimulates the phosphorylation of hepatic Stat3 to suppress expression of genes involved in gluconeogenesis, in the process improving glucose handling in obese mice. Preliminary data in a small cohort of obese patients show a similar association. These data support an important role for a subcutaneous adipose tissue-liver axis in mediating the acute metabolic benefits of amlexanox on glucose metabolism, and point to a new therapeutic pathway for type 2 diabetes
- …
