13 research outputs found

    Gaussian width bounds with applications to arithmetic progressions in random settings

    Get PDF
    Motivated by problems on random differences in Szemer\'{e}di's theorem and on large deviations for arithmetic progressions in random sets, we prove upper bounds on the Gaussian width of point sets that are formed by the image of the nn-dimensional Boolean hypercube under a mapping ψ:RnRk\psi:\mathbb{R}^n\to\mathbb{R}^k, where each coordinate is a constant-degree multilinear polynomial with 0-1 coefficients. We show the following applications of our bounds. Let [Z/NZ]p[\mathbb{Z}/N\mathbb{Z}]_p be the random subset of Z/NZ\mathbb{Z}/N\mathbb{Z} containing each element independently with probability pp. \bullet A set DZ/NZD\subseteq \mathbb{Z}/N\mathbb{Z} is \ell-intersective if any dense subset of Z/NZ\mathbb{Z}/N\mathbb{Z} contains a proper (+1)(\ell+1)-term arithmetic progression with common difference in DD. Our main result implies that [Z/NZ]p[\mathbb{Z}/N\mathbb{Z}]_p is \ell-intersective with probability 1o(1)1 - o(1) provided pω(NβlogN)p \geq \omega(N^{-\beta_\ell}\log N) for β=((+1)/2)1\beta_\ell = (\lceil(\ell+1)/2\rceil)^{-1}. This gives a polynomial improvement for all 3\ell \ge 3 of a previous bound due to Frantzikinakis, Lesigne and Wierdl, and reproves more directly the same improvement shown recently by the authors and Dvir. \bullet Let XkX_k be the number of kk-term arithmetic progressions in [Z/NZ]p[\mathbb{Z}/N\mathbb{Z}]_p and consider the large deviation rate ρk(δ)=logPr[Xk(1+δ)EXk]\rho_k(\delta) = \log\Pr[X_k \geq (1+\delta)\mathbb{E}X_k]. We give quadratic improvements of the best-known range of pp for which a highly precise estimate of ρk(δ)\rho_k(\delta) due to Bhattacharya, Ganguly, Shao and Zhao is valid for all odd k5k \geq 5. We also discuss connections with error correcting codes (locally decodable codes) and the Banach-space notion of type for injective tensor products of p\ell_p-spaces.Comment: 18 pages, some typos fixe

    Gaussian width bounds with applications to arithmetic progressions in random settings

    Get PDF
    Motivated by two problems on arithmetic progressions (APs)—concerning large deviations for AP counts in random sets and random differences in Szemer´edi’s theorem— we prove upper bounds on the Gaussian width of the image of the n-dimensional Boolean hypercube under a mapping ψ : Rn → Rk, where each coordinate is a constant-degree multilinear polynomial with 0/1 coefficients. We show the following applications of our bounds. Let [Z/NZ]p be the random subset of Z/NZ containing each element independently with probability p. • Let Xk be the number of k-term APs in [Z/NZ]p. We show that a precise estimate on the large deviation rate log Pr[Xk ≥ (1 + δ)EXk] due to Bhattacharya, Ganguly, Shao and Zhao is valid if

    High-entropy dual functions over finite fields and locally decodable codes

    Get PDF
    We show that for infinitely many primes p, there exist dual functions of order k over Fnp that cannot be approximated in L∞-distance by polynomial phase functions of degree k−1. This answers in the negative a natural finite-field analog of a problem of Frantzikinakis on L∞-approximations of dual functions over N (a.k.a. multiple correlation sequences) by nilsequences

    High-entropy dual functions over finite fields and locally decodable codes

    Get PDF
    We show that for infinitely many primes p, there exist dual functions of order k over Fnp that cannot be approximated in L∞-distance by polynomial phase functions of degree k−1. This answers in the negative a natural finite-field analog of a problem of Frantzikinakis on L∞-approximations of dual functions over N (a.k.a. multiple correlation sequences) by nilsequences
    corecore