236,450 research outputs found
Deep Gaussian Mixture Models
Deep learning is a hierarchical inference method formed by subsequent
multiple layers of learning able to more efficiently describe complex
relationships. In this work, Deep Gaussian Mixture Models are introduced and
discussed. A Deep Gaussian Mixture model (DGMM) is a network of multiple layers
of latent variables, where, at each layer, the variables follow a mixture of
Gaussian distributions. Thus, the deep mixture model consists of a set of
nested mixtures of linear models, which globally provide a nonlinear model able
to describe the data in a very flexible way. In order to avoid
overparameterized solutions, dimension reduction by factor models can be
applied at each layer of the architecture thus resulting in deep mixtures of
factor analysers.Comment: 19 pages, 4 figure
Adaptive Seeding for Gaussian Mixture Models
We present new initialization methods for the expectation-maximization
algorithm for multivariate Gaussian mixture models. Our methods are adaptions
of the well-known -means++ initialization and the Gonzalez algorithm.
Thereby we aim to close the gap between simple random, e.g. uniform, and
complex methods, that crucially depend on the right choice of hyperparameters.
Our extensive experiments indicate the usefulness of our methods compared to
common techniques and methods, which e.g. apply the original -means++ and
Gonzalez directly, with respect to artificial as well as real-world data sets.Comment: This is a preprint of a paper that has been accepted for publication
in the Proceedings of the 20th Pacific Asia Conference on Knowledge Discovery
and Data Mining (PAKDD) 2016. The final publication is available at
link.springer.com (http://link.springer.com/chapter/10.1007/978-3-319-31750-2
24
Optimal transport for Gaussian mixture models
We present an optimal mass transport framework on the space of Gaussian
mixture models, which are widely used in statistical inference. Our method
leads to a natural way to compare, interpolate and average Gaussian mixture
models. Basically, we study such models on a certain submanifold of probability
densities with certain structure. Different aspects of this framework are
discussed and several examples are presented to illustrate the results. This
method represents our first attempt to study optimal transport problems for
more general probability densities with structures.Comment: 14 pages, 10 figure
- …
