4,847 research outputs found

    On the Capacity Region of the Two-user Interference Channel with a Cognitive Relay

    Full text link
    This paper considers a variation of the classical two-user interference channel where the communication of two interfering source-destination pairs is aided by an additional node that has a priori knowledge of the messages to be transmitted, which is referred to as the it cognitive relay. For this Interference Channel with a Cognitive Relay (ICCR) In particular, for the class of injective semi-deterministic ICCRs, a sum-rate upper bound is derived for the general memoryless ICCR and further tightened for the Linear Deterministic Approximation (LDA) of the Gaussian noise channel at high SNR, which disregards the noise and focuses on the interaction among the users' signals. The capacity region of the symmetric LDA is completely characterized except for the regime of moderately weak interference and weak links from the CR to the destinations. The insights gained from the analysis of the LDA are then translated back to the symmetric Gaussian noise channel (GICCR). For the symmetric GICCR, an approximate characterization (to within a constant gap) of the capacity region is provided for a parameter regime where capacity was previously unknown. The approximately optimal scheme suggests that message cognition at a relay is beneficial for interference management as it enables simultaneous over the air neutralization of the interference at both destinations

    Incremental Relaying for the Gaussian Interference Channel with a Degraded Broadcasting Relay

    Full text link
    This paper studies incremental relay strategies for a two-user Gaussian relay-interference channel with an in-band-reception and out-of-band-transmission relay, where the link between the relay and the two receivers is modelled as a degraded broadcast channel. It is shown that generalized hash-and-forward (GHF) can achieve the capacity region of this channel to within a constant number of bits in a certain weak relay regime, where the transmitter-to-relay link gains are not unboundedly stronger than the interference links between the transmitters and the receivers. The GHF relaying strategy is ideally suited for the broadcasting relay because it can be implemented in an incremental fashion, i.e., the relay message to one receiver is a degraded version of the message to the other receiver. A generalized-degree-of-freedom (GDoF) analysis in the high signal-to-noise ratio (SNR) regime reveals that in the symmetric channel setting, each common relay bit can improve the sum rate roughly by either one bit or two bits asymptotically depending on the operating regime, and the rate gain can be interpreted as coming solely from the improvement of the common message rates, or alternatively in the very weak interference regime as solely coming from the rate improvement of the private messages. Further, this paper studies an asymmetric case in which the relay has only a single single link to one of the destinations. It is shown that with only one relay-destination link, the approximate capacity region can be established for a larger regime of channel parameters. Further, from a GDoF point of view, the sum-capacity gain due to the relay can now be thought as coming from either signal relaying only, or interference forwarding only.Comment: To appear in IEEE Trans. on Inf. Theor

    Interference Channel with a Half-Duplex Out-of-Band Relay

    Full text link
    A Gaussian interference channel (IC) aided by a half-duplex relay is considered, in which the relay receives and transmits in an orthogonal band with respect to the IC. The system thus consists of two parallel channels, the IC and the channel over which the relay is active, which is referred to as Out-of-Band Relay Channel (OBRC). The OBRC is operated by separating a multiple access phase from the sources to the relay and a broadcast phase from the relay to the destinations. Conditions under which the optimal operation, in terms of the sum-capacity, entails either signal relaying and/or interference forwarding by the relay are identified. These conditions also assess the optimality of either separable or non-separable transmission over the IC and OBRC. Specifically, the optimality of signal relaying and separable coding is established for scenarios where the relay-to-destination channels set the performance bottleneck with respect to the source-to-relay channels on the OBRC. Optimality of interference forwarding and non-separable operation is also established in special cases.Comment: 5 pages, 5 figures, to appear in Proceedings of IEEE ISIT 201

    The Multi-way Relay Channel

    Get PDF
    The multiuser communication channel, in which multiple users exchange information with the help of a relay terminal, termed the multi-way relay channel (mRC), is introduced. In this model, multiple interfering clusters of users communicate simultaneously, where the users within the same cluster wish to exchange messages among themselves. It is assumed that the users cannot receive each other's signals directly, and hence the relay terminal in this model is the enabler of communication. In particular, restricted encoders, which ignore the received channel output and use only the corresponding messages for generating the channel input, are considered. Achievable rate regions and an outer bound are characterized for the Gaussian mRC, and their comparison is presented in terms of exchange rates in a symmetric Gaussian network scenario. It is shown that the compress-and-forward (CF) protocol achieves exchange rates within a constant bit offset of the exchange capacity independent of the power constraints of the terminals in the network. A finite bit gap between the exchange rates achieved by the CF and the amplify-and-forward (AF) protocols is also shown. The two special cases of the mRC, the full data exchange model, in which every user wants to receive messages of all other users, and the pairwise data exchange model which consists of multiple two-way relay channels, are investigated in detail. In particular for the pairwise data exchange model, in addition to the proposed random coding based achievable schemes, a nested lattice coding based scheme is also presented and is shown to achieve exchange rates within a constant bit gap of the exchange capacity.Comment: Revised version of our submission to the Transactions on Information Theor

    Cooperation with an Untrusted Relay: A Secrecy Perspective

    Full text link
    We consider the communication scenario where a source-destination pair wishes to keep the information secret from a relay node despite wanting to enlist its help. For this scenario, an interesting question is whether the relay node should be deployed at all. That is, whether cooperation with an untrusted relay node can ever be beneficial. We first provide an achievable secrecy rate for the general untrusted relay channel, and proceed to investigate this question for two types of relay networks with orthogonal components. For the first model, there is an orthogonal link from the source to the relay. For the second model, there is an orthogonal link from the relay to the destination. For the first model, we find the equivocation capacity region and show that answer is negative. In contrast, for the second model, we find that the answer is positive. Specifically, we show by means of the achievable secrecy rate based on compress-and-forward, that, by asking the untrusted relay node to relay information, we can achieve a higher secrecy rate than just treating the relay as an eavesdropper. For a special class of the second model, where the relay is not interfering itself, we derive an upper bound for the secrecy rate using an argument whose net effect is to separate the eavesdropper from the relay. The merit of the new upper bound is demonstrated on two channels that belong to this special class. The Gaussian case of the second model mentioned above benefits from this approach in that the new upper bound improves the previously known bounds. For the Cover-Kim deterministic relay channel, the new upper bound finds the secrecy capacity when the source-destination link is not worse than the source-relay link, by matching with the achievable rate we present.Comment: IEEE Transactions on Information Theory, submitted October 2008, revised October 2009. This is the revised versio
    • …
    corecore