97 research outputs found

    Low complexity physical layer security approach for 5G internet of things

    Get PDF
    Fifth-generation (5G) massive machine-type communication (mMTC) is expected to support the cellular adaptation of internet of things (IoT) applications for massive connectivity. Due to the massive access nature, IoT is prone to high interception probability and the use of conventional cryptographic techniques in these scenarios is not practical considering the limited computational capabilities of the IoT devices and their power budget. This calls for a lightweight physical layer security scheme which will provide security without much computational overhead and/or strengthen the existing security measures. Here a shift based physical layer security approach is proposed which will provide a low complexity security without much changes in baseline orthogonal frequency division multiple access (OFDMA) architecture as per the low power requirements of IoT by systematically rearranging the subcarriers. While the scheme is compatible with most fast Fourier transform (FFT) based waveform contenders which are being proposed in 5G especially in mMTC and ultra-reliable low latency communication (URLLC), it can also add an additional layer of security at physical layer to enhanced mobile broadband (eMBB)

    Optimized Hardware Implementations of Lightweight Cryptography

    Get PDF
    Radio frequency identification (RFID) is a key technology for the Internet of Things era. One important advantage of RFID over barcodes is that line-of-sight is not required between readers and tags. Therefore, it is widely used to perform automatic and unique identification of objects in various applications, such as product tracking, supply chain management, and animal identification. Due to the vulnerabilities of wireless communication between RFID readers and tags, security and privacy issues are significant challenges. The most popular passive RFID protocol is the Electronic Product Code (EPC) standard. EPC tags have many constraints on power consumption, memory, and computing capability. The field of lightweight cryptography was created to provide secure, compact, and flexible algorithms and protocols suitable for applications where the traditional cryptographic primitives, such as AES, are impractical. In these lightweight algorithms, tradeoffs are made between security, area/power consumption, and throughput. In this thesis, we focus on the hardware implementations and optimizations of lightweight cryptography and present the Simeck block cipher family, the WG-8 stream cipher, the Warbler pseudorandom number generator (PRNG), and the WGLCE cryptographic engine. Simeck is a new family of lightweight block ciphers. Simeck takes advantage of the good components and design ideas of the Simon and Speck block ciphers and it has three instances with different block and key sizes. We provide an extensive exploration of different hardware architectures in ASICs and show that Simeck is smaller than Simon in terms of area and power consumption. For the WG-8 stream cipher, we explore four different approaches for the WG transformation module, where one takes advantage of constant arrays and the other three benefit from the tower field constructions of the finite field \F_{2^8} and also efficient basis conversion matrices. The results in FPGA and ASICs show that the constant arrays based method is the best option. We also propose a hybrid design to improve the throughput with a little additional hardware. For the Warbler PRNG, we present the first detailed and smallest hardware implementations and optimizations. The results in ASICs show that the area of Warbler with throughput of 1 bit per 5 clock cycles (1/5 bpc) is smaller than that of other PRNGs and is in fact smaller than that of most of the lightweight primitives. We also optimize and improve the throughput from 1/5 bpc to 1 bpc with a little additional area and power consumption. Finally, we propose a cryptographic engine WGLCE for passive RFID systems. We merge the Warbler PRNG and WG-5 stream cipher together by reusing the finite state machine for both of them. Therefore, WGLCE can provide data confidentiality and generate pseudorandom numbers. After investigating the design rationales and hardware architectures, our results in ASICs show that WGLCE meets the constraints of passive RFID systems

    Pseudorandom Bit Generation with Asymmetric Numeral Systems

    Get PDF
    The generation of pseudorandom binary sequences is of a great importance in numerous applications stretching from simulation and gambling to cryptography. Pseudorandom bit generators (PRBGs) can be split into two classes depending on their claimed security. The first includes PRBGs that are provably secure (such as the Blum-Blum-Shub one). Security of the second class rests on heuristic arguments. Sadly, PRBG from the first class are inherently inefficient and some PRBG are insecure against quantum attacks. While, their siblings from the second class are very efficient, but security relies on their resistance against known cryptographic attacks. This work presents a construction of PRBG from the asymmetric numeral system (ANS) compression algorithm. We define a family of PRBGs for 2R2^R ANS states and prove that it is indistinguishable from a truly random one for a big enough RR. To make our construction efficient, we investigate PRBG built for smaller R=7,8,9R=7,8,9 and show how to remove local correlations from output stream. We permute output bits using rotation and Keccak transformations and show that permuted bits pass all NIST tests. Our PRBG design is provably secure (for a large enough RR) and heuristically secure (for a smaller RR). Besides, we claim that our PRBG is secure against quantum adversaries

    Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report is a deliverable for the ECRYPT European network of excellence in cryptology. It gives a brief summary of some of the research trends in symmetric cryptography at the time of writing. The following aspects of symmetric cryptography are investigated in this report: • the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); • the recently proposed algebraic attacks on symmetric primitives (Section 2); • the design criteria for symmetric ciphers (Section 3); • the provable properties of symmetric primitives (Section 4); • the major industrial needs in the area of symmetric cryptography (Section 5)

    D.STVL.9 - Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report gives a brief summary of some of the research trends in symmetric cryptography at the time of writing (2008). The following aspects of symmetric cryptography are investigated in this report: • the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); • the algebraic attacks on symmetric primitives (Section 2); • the design criteria for symmetric ciphers (Section 3); • the provable properties of symmetric primitives (Section 4); • the major industrial needs in the area of symmetric cryptography (Section 5)

    Hardware design of cryptographic algorithms for low-cost RFID tags

    Get PDF
    Mención Internacional en el título de doctorRadio Frequency Identification (RFID) is a wireless technology for automatic identification that has experienced a notable growth in the last years. RFID is an important part of the new trend named Internet of Things (IoT), which describes a near future where all the objects are connected to the Internet and can interact between them. The massive deployment of RFID technology depends on device costs and dependability. In order to make these systems dependable, security needs to be added to RFID implementations, as RF communications can be accessed by an attacker who could extract or manipulate private information from the objects. On the other hand, reduced costs usually imply resource-constrained environments. Due to these resource limitations necessary to low-cost implementations, typical cryptographic primitives cannot be used to secure low-cost RFID systems. A new concept emerged due to this necessity, Lightweight Cryptography. This term was used for the first time in 2003 by Vajda et al. and research on this topic has been done widely in the last decade. Several proposals oriented to low-cost RFID systems have been reported in the literature. Many of these proposals do not tackle in a realistic way the multiple restrictions required by the technology or the specifications imposed by the different standards that have arose for these technologies. The objective of this thesis is to contribute in the field of lightweight cryptography oriented to low-cost RFID tags from the microelectronics point of view. First, a study about the implementation of lightweight cryptographic primitives is presented . Specifically, the area used in the implementation, which is one of the most important requirements of the technology as it is directly related to the cost. After this analysis, a footprint area estimator of lightweight algorithms has been developed. This estimator calculates an upper-bound of the area used in the implementation. This estimator will help in making some choices at the algorithmic level, even for designers without hardware design skills. Second, two pseudo-random number generators have been proposed. Pseudorandom number generators are essential cryptographic blocks in RFID systems. According to the most extended RFID standard, EPC Class-1 Gen-2, it is mandatory to include a generator in RFID tags. Several architectures for the two proposed generators have been presented in this thesis and they have been integrated in two authentication protocols, and the main metrics (area, throughput and power consumption) have been analysed. Finally, the topic of True Random Number Generators is studied. These generators are also very important in secure RFID, and are currently a trending research line. A novel generator, presented by Cherkaoui et al., has been evaluated under different attack scenarios. A new true random number generator based on coherent sampling and suitable for low-cost RFID systems has been proposed.La tecnología de Identificación por Radio Frecuencia, más conocida por sus siglas en inglés RFID, se ha convertido en una de las tecnologías de autoidentificación más importantes dentro de la nueva corriente de identificación conocida como Internet de las Cosas (IoT). Esta nueva tendencia describe un futuro donde todos los objetos están conectados a internet y son capaces de identificarse ante otros objetos. La implantación masiva de los sistemas RFID está hoy en día limitada por el coste de los dispositivos y la fiabilidad. Para que este tipo de sistemas sea fiable, es necesario añadir seguridad a las implementaciones RFID, ya que las comunicaciones por radio frecuencia pueden ser fácilmente atacadas y la información sobre objetos comprometida. Por otro lado, para que todos los objetos estén conectados es necesario que el coste de la tecnología de identificación sea muy reducido, lo que significa una gran limitación de recursos en diferentes ámbitos. Dada la limitación de recursos necesaria en implementaciones de bajo coste, las primitivas criptográficas típicas no pueden ser usadas para dotar de seguridad a un sistema RFID de bajo coste. El concepto de primitiva criptográfica ligera fue introducido por primera vez 2003 por Vajda et al. y ha sido desarrollado ampliamente en los últimos años, dando como resultados una serie de algoritmos criptográficos ligeros adecuados para su uso en tecnología RFID de bajo coste. El principal problema de muchos de los algoritmos presentados es que no abordan de forma realista las múltiples limitaciones de la tecnología. El objetivo de esta tesis es el de contribuir en el campo de la criptografía ligera orientada a etiquetas RFID de bajo coste desde el punto de vista de la microelectrónica. En primer lugar se presenta un estudio de la implementación de las primitivas criptográficas ligeras más utilizadas, concretamente analizando el área ocupado por dichas primitivas, ya que es uno de los parámetros críticos considerados a la hora de incluir dichas primitivas criptográficas en los dispositivos RFID de bajo coste. Tras el análisis de estas primitivas se ha desarrollado un estimador de área para algoritmos criptográficos ultraligeros que trata de dar una cota superior del área total ocupada por el algoritmo (incluyendo registros y lógica de control). Este estimador permite al diseñador, en etapas tempranas del diseño y sin tener ningún conocimiento sobre implementaciones, saber si el algoritmo está dentro de los límites de área mpuestos por la tecnología RFID. También se proponen 2 generadores de números pseudo-aleatorios. Estos generadores son uno de los bloques criptográficos más importantes en un sistema RFID. El estándar RFID más extendido entre la industria, EPC Class-1 Gen-2, establece el uso obligatorio de dicho tipo de generadores en las etiquetas RFID. Los generadores propuestos han sido implementados e integrados en 2 protocolos de comunicación orientados a RFID, obteniendo buenos resultados en las principales características del sistema. Por último, se ha estudiado el tema de los generadores de números aleatorios. Este tipo de generadores son frecuentemente usados en seguridad RFID. Actualmente esta línea de investigación es muy popular. En esta tesis, se ha evaluado la seguridad de un novedoso TRNG, presentado por Cherkaoui et al., frente ataques típicos considerados en la literatura. Además, se ha presentado un nuevo TRNG de bajo coste basado en la técnica de muestreo por pares.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Teresa Riesgo Alcaide.- Secretario: Emilio Olías Ruiz.- Vocal: Giorgio di Natal
    • …
    corecore