1,409 research outputs found
The Cosmic Microwave Background and the Ionization History of the Universe
Details of how the primordial plasma recombined and how the universe later
reionized are currently somewhat uncertain. This uncertainty can restrict the
accuracy of cosmological parameter measurements from the Cosmic Microwave
Background (CMB). More positively, future CMB data can be used to constrain the
ionization history using observations. We first discuss how current
uncertainties in the recombination history impact parameter constraints, and
show how suitable parameterizations can be used to obtain unbiased parameter
estimates from future data. Some parameters can be constrained robustly,
however there is clear motivation to model recombination more accurately with
quantified errors. We then discuss constraints on the ionization fraction
binned in redshift during reionization. Perfect CMB polarization data could in
principle distinguish different histories that have the same optical depth. We
discuss how well the Planck satellite may be able to constrain the ionization
history, and show the currently very weak constraints from WMAP three-year
data.Comment: Changes to match MNRAS accepted versio
Small-scale CMB Temperature and Polarization Anisotropies due to Patchy Reionization
We study contributions from inhomogeneous (patchy) reionization to arcminute
scale () cosmic microwave background (CMB) anisotropies.
We show that inhomogeneities in the ionization fraction, rather than in the
mean density, dominate both the temperature and the polarization power spectra.
Depending on the ionization history and the clustering bias of the ionizing
sources, we find that rms temperature fluctuations range from 2 K to 8
K and the corresponding values for polarization are over two orders of
magnitude smaller. Reionization can significantly bias cosmological parameter
estimates and degrade gravitational lensing potential reconstruction from
temperature maps but not from polarization maps. We demonstrate that a simple
modeling of the reionization temperature power spectrum may be sufficient to
remove the parameter bias. The high- temperature power spectrum will
contain some limited information about the sources of reionization.Comment: 11 pages, 8 figures. Minor changes to match version accepted by Ap
Tomography of the Reionization Epoch with Multifrequency CMB Observations
We study the constraints that future multifrequency Cosmic Microwave
Background (CMB) experiments will be able to set on the metal enrichment
history of the Inter Galactic Medium at the epoch of reionisation. We forecast
the signal to noise ratio for the detection of the signal introduced in the CMB
by resonant scattering off metals at the end of the Dark Ages. We take into
account systematics associated to inter-channel calibration, PSF reconstruction
errors and innacurate foreground removal. We develop an algorithm to optimally
extract the signal generated by metals during reionisation and to remove
accurately the contamination due to the thermal Sunyaev-Zel'dovich effect.
Although demanding levels of foreground characterisation and control of
systematics are required, they are very distinct from those encountered in
HI-21cm studies and CMB polarization, and this fact encourages the study of
resonant scattering off metals as an alternative way of conducting tomography
of the reionisation epoch. An ACT-like experiment with optimistic assumtions on
systematic effects, and looking at clean regions of the sky, can detect changes
of 3%-12% (95% c.l.) of the OIII abundance (with respect its solar value) in
the redshift range  [12,22], for reionization redshift .
However, for , it can only set upper limits on NII abundance
increments of  60% its solar value in the redshift range  [5.5,9],
(95% c.l.). These constraints assume that inter-channel calibration is accurate
down to one part in , which constitutes the most critical technical
requirement of this method, but still achievable with current technology.Comment: 10 pages, 2 figures, submitted to Astrophysical Journal. Comments are
  welcom
Higher-Order Gravitational Lensing Reconstruction using Feynman Diagrams
We develop a method for calculating the correlation structure of the Cosmic
Microwave Background (CMB) using Feynman diagrams, when the CMB has been
modified by gravitational lensing, Faraday rotation, patchy reionization, or
other distorting effects. This method is used to calculate the bias of the
Hu-Okamoto quadratic estimator in reconstructing the lensing power spectrum up
to O(\phi^4) in the lensing potential . We consider both the diagonal
noise TTTT, EBEB, etc. and, for the first time, the off-diagonal noise TTTE,
TBEB, etc. The previously noted large O(\phi^4) term in the second order noise
is identified to come from a particular class of diagrams. It can be
significantly reduced by a reorganization of the  expansion. These
improved estimators have almost no bias for the off-diagonal case involving
only one  component of the CMB, such as EEEB.Comment: 17 pages, 17 figure
An Emulator for the Lyman-alpha Forest
We present methods for interpolating between the 1-D flux power spectrum of
the Lyman- forest, as output by cosmological hydrodynamic simulations.
Interpolation is necessary for cosmological parameter estimation due to the
limited number of simulations possible. We construct an emulator for the
Lyman- forest flux power spectrum from  small simulations using
Latin hypercube sampling and Gaussian process interpolation. We show that this
emulator has a typical accuracy of 1.5% and a worst-case accuracy of 4%, which
compares well to the current statistical error of 3 - 5% at  from BOSS
DR9. We compare to the previous state of the art, quadratic polynomial
interpolation. The Latin hypercube samples the entire volume of parameter
space, while quadratic polynomial emulation samples only lower-dimensional
subspaces. The Gaussian process provides an estimate of the emulation error and
we show using test simulations that this estimate is reasonable. We construct a
likelihood function and use it to show that the posterior constraints generated
using the emulator are unbiased. We show that our Gaussian process emulator has
lower emulation error than quadratic polynomial interpolation and thus produces
tighter posterior confidence intervals, which will be essential for future
Lyman- surveys such as DESI.Comment: 28 pages, 10 figures, accepted to JCAP with minor change
- …
