16,989 research outputs found

    Interference Mitigation in Large Random Wireless Networks

    Full text link
    A central problem in the operation of large wireless networks is how to deal with interference -- the unwanted signals being sent by transmitters that a receiver is not interested in. This thesis looks at ways of combating such interference. In Chapters 1 and 2, we outline the necessary information and communication theory background, including the concept of capacity. We also include an overview of a new set of schemes for dealing with interference known as interference alignment, paying special attention to a channel-state-based strategy called ergodic interference alignment. In Chapter 3, we consider the operation of large regular and random networks by treating interference as background noise. We consider the local performance of a single node, and the global performance of a very large network. In Chapter 4, we use ergodic interference alignment to derive the asymptotic sum-capacity of large random dense networks. These networks are derived from a physical model of node placement where signal strength decays over the distance between transmitters and receivers. (See also arXiv:1002.0235 and arXiv:0907.5165.) In Chapter 5, we look at methods of reducing the long time delays incurred by ergodic interference alignment. We analyse the tradeoff between reducing delay and lowering the communication rate. (See also arXiv:1004.0208.) In Chapter 6, we outline a problem that is equivalent to the problem of pooled group testing for defective items. We then present some new work that uses information theoretic techniques to attack group testing. We introduce for the first time the concept of the group testing channel, which allows for modelling of a wide range of statistical error models for testing. We derive new results on the number of tests required to accurately detect defective items, including when using sequential `adaptive' tests.Comment: PhD thesis, University of Bristol, 201

    Nonlinear Information Bottleneck

    Full text link
    Information bottleneck (IB) is a technique for extracting information in one random variable XX that is relevant for predicting another random variable YY. IB works by encoding XX in a compressed "bottleneck" random variable MM from which YY can be accurately decoded. However, finding the optimal bottleneck variable involves a difficult optimization problem, which until recently has been considered for only two limited cases: discrete XX and YY with small state spaces, and continuous XX and YY with a Gaussian joint distribution (in which case optimal encoding and decoding maps are linear). We propose a method for performing IB on arbitrarily-distributed discrete and/or continuous XX and YY, while allowing for nonlinear encoding and decoding maps. Our approach relies on a novel non-parametric upper bound for mutual information. We describe how to implement our method using neural networks. We then show that it achieves better performance than the recently-proposed "variational IB" method on several real-world datasets

    Asymptotic Sum-Capacity of Random Gaussian Interference Networks Using Interference Alignment

    Full text link
    We consider a dense n-user Gaussian interference network formed by paired transmitters and receivers placed independently at random in Euclidean space. Under natural conditions on the node position distributions and signal attenuation, we prove convergence in probability of the average per-user capacity C_Sigma/n to 1/2 E log(1 + 2SNR). The achievability result follows directly from results based on an interference alignment scheme presented in recent work of Nazer et al. Our main contribution comes through the converse result, motivated by ideas of `bottleneck links' developed in recent work of Jafar. An information theoretic argument gives a capacity bound on such bottleneck links, and probabilistic counting arguments show there are sufficiently many such links to tightly bound the sum-capacity of the whole network.Comment: 5 pages; to appear at ISIT 201

    Emergence of Invariance and Disentanglement in Deep Representations

    Full text link
    Using established principles from Statistics and Information Theory, we show that invariance to nuisance factors in a deep neural network is equivalent to information minimality of the learned representation, and that stacking layers and injecting noise during training naturally bias the network towards learning invariant representations. We then decompose the cross-entropy loss used during training and highlight the presence of an inherent overfitting term. We propose regularizing the loss by bounding such a term in two equivalent ways: One with a Kullbach-Leibler term, which relates to a PAC-Bayes perspective; the other using the information in the weights as a measure of complexity of a learned model, yielding a novel Information Bottleneck for the weights. Finally, we show that invariance and independence of the components of the representation learned by the network are bounded above and below by the information in the weights, and therefore are implicitly optimized during training. The theory enables us to quantify and predict sharp phase transitions between underfitting and overfitting of random labels when using our regularized loss, which we verify in experiments, and sheds light on the relation between the geometry of the loss function, invariance properties of the learned representation, and generalization error.Comment: Deep learning, neural network, representation, flat minima, information bottleneck, overfitting, generalization, sufficiency, minimality, sensitivity, information complexity, stochastic gradient descent, regularization, total correlation, PAC-Baye
    corecore