127,548 research outputs found
Positivity for Gaussian graphical models
Gaussian graphical models are parametric statistical models for jointly
normal random variables whose dependence structure is determined by a graph. In
previous work, we introduced trek separation, which gives a necessary and
sufficient condition in terms of the graph for when a subdeterminant is zero
for all covariance matrices that belong to the Gaussian graphical model. Here
we extend this result to give explicit cancellation-free formulas for the
expansions of nonzero subdeterminants.Comment: 16 pages, 3 figure
Sure Screening for Gaussian Graphical Models
We propose {graphical sure screening}, or GRASS, a very simple and
computationally-efficient screening procedure for recovering the structure of a
Gaussian graphical model in the high-dimensional setting. The GRASS estimate of
the conditional dependence graph is obtained by thresholding the elements of
the sample covariance matrix. The proposed approach possesses the sure
screening property: with very high probability, the GRASS estimated edge set
contains the true edge set. Furthermore, with high probability, the size of the
estimated edge set is controlled. We provide a choice of threshold for GRASS
that can control the expected false positive rate. We illustrate the
performance of GRASS in a simulation study and on a gene expression data set,
and show that in practice it performs quite competitively with more complex and
computationally-demanding techniques for graph estimation
Gaussian Approximation of Collective Graphical Models
The Collective Graphical Model (CGM) models a population of independent and
identically distributed individuals when only collective statistics (i.e.,
counts of individuals) are observed. Exact inference in CGMs is intractable,
and previous work has explored Markov Chain Monte Carlo (MCMC) and MAP
approximations for learning and inference. This paper studies Gaussian
approximations to the CGM. As the population grows large, we show that the CGM
distribution converges to a multivariate Gaussian distribution (GCGM) that
maintains the conditional independence properties of the original CGM. If the
observations are exact marginals of the CGM or marginals that are corrupted by
Gaussian noise, inference in the GCGM approximation can be computed efficiently
in closed form. If the observations follow a different noise model (e.g.,
Poisson), then expectation propagation provides efficient and accurate
approximate inference. The accuracy and speed of GCGM inference is compared to
the MCMC and MAP methods on a simulated bird migration problem. The GCGM
matches or exceeds the accuracy of the MAP method while being significantly
faster.Comment: Accepted by ICML 2014. 10 page version with appendi
On Graphical Models via Univariate Exponential Family Distributions
Undirected graphical models, or Markov networks, are a popular class of
statistical models, used in a wide variety of applications. Popular instances
of this class include Gaussian graphical models and Ising models. In many
settings, however, it might not be clear which subclass of graphical models to
use, particularly for non-Gaussian and non-categorical data. In this paper, we
consider a general sub-class of graphical models where the node-wise
conditional distributions arise from exponential families. This allows us to
derive multivariate graphical model distributions from univariate exponential
family distributions, such as the Poisson, negative binomial, and exponential
distributions. Our key contributions include a class of M-estimators to fit
these graphical model distributions; and rigorous statistical analysis showing
that these M-estimators recover the true graphical model structure exactly,
with high probability. We provide examples of genomic and proteomic networks
learned via instances of our class of graphical models derived from Poisson and
exponential distributions.Comment: Journal of Machine Learning Researc
- β¦