104,958 research outputs found
Linear Memory Networks
Recurrent neural networks can learn complex transduction problems that
require maintaining and actively exploiting a memory of their inputs. Such
models traditionally consider memory and input-output functionalities
indissolubly entangled. We introduce a novel recurrent architecture based on
the conceptual separation between the functional input-output transformation
and the memory mechanism, showing how they can be implemented through different
neural components. By building on such conceptualization, we introduce the
Linear Memory Network, a recurrent model comprising a feedforward neural
network, realizing the non-linear functional transformation, and a linear
autoencoder for sequences, implementing the memory component. The resulting
architecture can be efficiently trained by building on closed-form solutions to
linear optimization problems. Further, by exploiting equivalence results
between feedforward and recurrent neural networks we devise a pretraining
schema for the proposed architecture. Experiments on polyphonic music datasets
show competitive results against gated recurrent networks and other state of
the art models
Toward Abstraction from Multi-modal Data: Empirical Studies on Multiple Time-scale Recurrent Models
The abstraction tasks are challenging for multi- modal sequences as they
require a deeper semantic understanding and a novel text generation for the
data. Although the recurrent neural networks (RNN) can be used to model the
context of the time-sequences, in most cases the long-term dependencies of
multi-modal data make the back-propagation through time training of RNN tend to
vanish in the time domain. Recently, inspired from Multiple Time-scale
Recurrent Neural Network (MTRNN), an extension of Gated Recurrent Unit (GRU),
called Multiple Time-scale Gated Recurrent Unit (MTGRU), has been proposed to
learn the long-term dependencies in natural language processing. Particularly
it is also able to accomplish the abstraction task for paragraphs given that
the time constants are well defined. In this paper, we compare the MTRNN and
MTGRU in terms of its learning performances as well as their abstraction
representation on higher level (with a slower neural activation). This was done
by conducting two studies based on a smaller data- set (two-dimension time
sequences from non-linear functions) and a relatively large data-set
(43-dimension time sequences from iCub manipulation tasks with multi-modal
data). We conclude that gated recurrent mechanisms may be necessary for
learning long-term dependencies in large dimension multi-modal data-sets (e.g.
learning of robot manipulation), even when natural language commands was not
involved. But for smaller learning tasks with simple time-sequences, generic
version of recurrent models, such as MTRNN, were sufficient to accomplish the
abstraction task.Comment: Accepted by IJCNN 201
- …
