461,149 research outputs found

    Catalytic flow with a coupled Finite Difference -- Lattice Boltzmann scheme

    Get PDF
    Many catalyst devices employ flow through porous structures, which leads to a complex macroscopic mass and heat transport. To unravel the detailed dynamics of the reactive gas flow, we present an all-encompassing model, consisting of thermal lattice Boltzmann model by Kang et al., used to solve the heat and mass transport in the gas domain, coupled to a finite differences solver for the heat equation in the solid via thermal reactive boundary conditions for a consistent treatment of the reaction enthalpy. The chemical surface reactions are incorporated in a flexible fashion through flux boundary conditions at the gas-solid interface. We scrutinize the thermal FD-LBM by benchmarking the macroscopic transport in the gas domain as well as conservation of the enthalpy across the solid-gas interface. We exemplify the applicability of our model by simulating the reactive gas flow through a microporous material catalysing the so-called water-gas-shift reaction

    A diffuse interface model for solid-liquid-air dissolution problems based on a porous medium theory

    Get PDF
    The underground rock may be dissolved by the flows of groundwater where the dissolution mainly happens at the liquid-solid interface. In many practical cases, the underground cavities are not occupied only by the water, but also the gas phase, e.g., air, CO2. In this case, there are solid-liquid-gas three phases. Normally, the air does not participate the dissolution. However, it may influence the dissolution as the position of the solid-liquid interface may gradually change with the dissolution process. Simulating the dissolution problems with multi-moving interfaces is a difficult but rather interesting task. In this paper, we propose a diffuse interface model (DIM) to simulate the three-phase dissolution problem, based on a porous medium theory and a volume averaging theory. The interfaces are regarded as continuous layers where the phase indicator (for the solid-liquid interface) and the phase saturation (for the liquid-gas interface) vary rapidly but smoothly

    Propellant combustion phenomena during rapid depressurization Final report

    Get PDF
    Idealized combustion model in which exothermic or endothermic reactions are permitted at or very near solid-gas interface

    pH-responsive gas–water–solid interface for multiphase catalysis

    Get PDF
    © 2015 American Chemical Society. Despite their wide utility in laboratory synthesis and industrial fabrication, gas-water-solid multiphase catalysis reactions often suffer from low reaction efficiency because of the low solubility of gases in water. Using a surface-modification protocol, interface-active silica nanoparticles were synthesized. Such nanoparticles can assemble at the gas-water interface, stabilizing micrometer-sized gas bubbles in water, and disassemble by tuning of the aqueous phase pH. The ability to stabilize gas microbubbles can be finely tuned through variation of the surface-modification protocol. As proof of this concept, Pd and Au were deposited on these silica nanoparticles, leading to interface-active catalysts for aqueous hydrogenation and oxidation, respectively. With such catalysts, conventional gas-water-solid multiphase reactions can be transformed to H 2 or O 2 microbubble reaction systems. The resultant microbubble reaction systems exhibit significant catalysis efficiency enhancement effects compared with conventional multiphase reactions. The significant improvement is attributed to the pronounced increase in reaction interface area that allows for the direct contact of gas, water, and solid phases. At the end of reaction, the microbubbles can be removed from the reaction systems through changing the pH, allowing product separation and catalyst recycling. Interestingly, the alcohol oxidation activation energy for the microbubble systems is much lower than that for the conventional multiphase reaction, also indicating that the developed microbubble system may be a valuable platform to design innovative multiphase catalysis reactions

    Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation

    Full text link
    Multicomponent multiphase reactive transport processes with dissolution-precipitation are widely encountered in energy and environment systems. A pore-scale two-phase multi-mixture model based on the lattice Boltzmann method (LBM) is developed for such complex transport processes, where each phase is considered as a mixture of miscible components in it. The liquid-gas fluid flow with large density ratio is simulated using the multicomponent multiphase pseudo-potential LB model; the transport of certain solute in the corresponding solvent is solved using the mass transport LB model; and the dynamic evolutions of the liquid-solid interface due to dissolution-precipitation are captured by an interface tracking scheme. The model developed can predict coupled multiple physicochemical processes including multiphase flow, multicomponent mass transport, homogeneous reactions in the bulk fluid and heterogeneous dissolution-precipitation reactions at the fluid-solid interface, and dynamic evolution of the solid matrix geometries at the pore-scale. The model is then applied to a physicochemical system encountered in shale gas/oil industry involving multiphase flow, multicomponent reactive transport and dissolution-precipitation, with several reactions whose rates can be several orders of magnitude different at a given temperature. The pore-scale phenomena and complex interaction between different sub-processes are investigated and discussed in detail

    Lattice density-functional theory of surface melting: the effect of a square-gradient correction

    Full text link
    I use the method of classical density-functional theory in the weighted-density approximation of Tarazona to investigate the phase diagram and the interface structure of a two-dimensional lattice-gas model with three phases -- vapour, liquid, and triangular solid. While a straightforward mean-field treatment of the interparticle attraction is unable to give a stable liquid phase, the correct phase diagram is obtained when including a suitably chosen square-gradient term in the system grand potential. Taken this theory for granted, I further examine the structure of the solid-vapour interface as the triple point is approached from low temperature. Surprisingly, a novel phase (rather than the liquid) is found to grow at the interface, exhibiting an unusually long modulation along the interface normal. The conventional surface-melting behaviour is recovered only by artificially restricting the symmetries being available to the density field.Comment: 16 pages, 6 figure

    Role of Metastable States in Phase Ordering Dynamics

    Full text link
    We show that the rate of separation of two phases of different densities (e.g. gas and solid) can be radically altered by the presence of a metastable intermediate phase (e.g. liquid). Within a Cahn-Hilliard theory we study the growth in one dimension of a solid droplet from a supersaturated gas. A moving interface between solid and gas phases (say) can, for sufficient (transient) supersaturation, unbind into two interfaces separated by a slab of metastable liquid phase. We investigate the criteria for unbinding, and show that it may strongly impede the growth of the solid phase.Comment: 4 pages, Latex, Revtex, epsf. Updated two reference
    corecore