110 research outputs found

    Gamut expanded halftone prints

    Get PDF
    We propose a framework for printing high chroma and bright colors which are beyond both the display sRGB and the classical cmyk print gamuts. These colors are printed with a combination of classical cmyk inks and the two additional daylight fluorescent magenta and yellow inks. The goal is to enhance image parts by printing them with high chroma and bright colors. We first select the image parts to be enhanced. We then apply to their colors a gamut expansion that increases both their chroma and their lightness towards the colors located at the boundary of the gamut formed by the combination of classical and fluorescent inks. This expansion can be controlled by user-defined parameters. We create smooth chroma transitions between the expanded and non-expanded image parts. We also preview the printable gamut expanded image generated according to user-defined gamut expansion parameters. The resulting prototype software enables artists to create and print their own designs

    Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials

    Full text link
    Accurate color reproduction is important in many applications of 3D printing, from design prototypes to 3D color copies or portraits. Although full color is available via other technologies, multi-jet printers have greater potential for graphical 3D printing, in terms of reproducing complex appearance properties. However, to date these printers cannot produce full color, and doing so poses substantial technical challenges, from the shear amount of data to the translucency of the available color materials. In this paper, we propose an error diffusion halftoning approach to achieve full color with multi-jet printers, which operates on multiple isosurfaces or layers within the object. We propose a novel traversal algorithm for voxel surfaces, which allows the transfer of existing error diffusion algorithms from 2D printing. The resulting prints faithfully reproduce colors, color gradients and fine-scale details.Comment: 15 pages, 14 figures; includes supplemental figure

    A Designer\u27s guide to the evaluation of digital proofs

    Get PDF
    Digital color proofs and pre-proofs are used by graphic artists and commercial printers throughout the prepress process. However the prepress process has undergone radical changes over the past decade due to the introduction of desk top publishing and desktop prepress. Alongside of the desktop publishing revo lution has come a multitude of new digital proofing technologies for use in this ever changing environment. Technologies including, but not limited to, liquid inkjet, dye sublimation, continuous inkjet, color laser, and thermal wax transfer printers have provided an entire range of color accuracy and price suitability to many of their users. However one needs to be able to understand the practical applications and limitations of these technologies to make a suitable choice for a specific prepress operation or design process. Therefore a handbook for the users of digital proofs has been created for their benefit. The underlying structure of this handbook is based on the following six chap ters. The first chapter, entitled Communicating with Prepress and the Attributes of Digital Proofing, contains multiple parts. Firstly, it contains information for the designer in regards to the advantages and disadvantages of all types of digital output devices. It discusses the advantages which digital output devices may or may not have over conventional proofing systems. Additionally, ideas such as the vantages and drawbacks of preproofers and proofers is elaborated upon. Information for this part of the chapter was obtained through questionnaires completed by, and interviews with print buyers, art directors, and production managers from advertising agencies and prepress providers in the Rochester area. More information for this section of the first chapter was obtained through various manufacturer\u27s literature, printing industry reports and various periodi cals. Chapter One also discusses ideas behind the application of color printers (preproofers) and digital proofers. These ideas address issues which pertain to the application of specific printing and proofing processes to specific phases of the creative and production processes. Additionally, discussions regarding proof ing costs, qualities, and production turnaround time may be found in this part of the first chapter. Information for this section of Chapter One was obtained through information found in printing and publishing related periodicals, as well as in manufacturers\u27 literature. Finally, the first chapter develops a system for the correction of digital preproofs and proofs. Multiple groups of ideas pertaining to the correction of digital output are discussed. Some of these include sections entitled Digital File Tracking and Identification, Evaluation of Design Elements, Evaluating Colors, Element Positioning, and Element Dimension Adjustments. Information for this part of the chapter was obtained through the evaluation of previously corrected digital con tract proofs and preproofs, as well as the interviews and questionnaires men tioned above. The second chapter, entitled Proofing Typography, displays the many different ways that printing and proofing technologies affect text type and display typog raphy. Using the CD-Rom included in the back of the book, one may view on screen how the following technologies affect type ranging from 3 points to 72 points in size: liquid inkjet, large format liquid inkjet, phase-change inkjet, ther mal wax transfer, dye sublimation, continuous inkjet, and dye ablation. Information and samples for this chapter were obtained through printing and proofing system manufacturers and advertising agencies in the Rochester area. The Color Primer and Chapter Three: Proofing for Imagery and Color, contain information for the designer which may be applied to proper evaluation of color on color prints and digital proofs. The Color Primer discusses subjects such as color space, the additive and subtractive color theories, and common color mea surement tools. Chapter Three then applies some of this knowledge in its discus sions of proper lighting conditions for viewing prints and proofs, and different human factors which influence the highly subjective evaluation of all digital color output. Information for this chapter was gathered using graphic arts and printing industry related periodicals and industry-wide books related to color and its reproduction. The fourth chapter, entitled Substrates and Digital Output, educates the design er about the effects on text, imagery, and graphics which occur when creating digital prints and proofs on a variety of papers. Various paper surfaces such as gloss, semi-gloss and matte surfaces are addressed. The affects of colored paper on imagery and graphics are also elaborated upon. Additionally, printing and proofing processes are discussed in regards to the substrates that they accept for output. Information for this chapter was gathered through manufacturers\u27 litera ture and various industry related books and periodical articles. The Proofing Process Supplement was created to familiarize the designer with all currently popular forms of digital output technology. The process supplement discusses the imaging processes used by the following digital output technolo gies: liquid inkjet, phase-change inkjet, thermal wax transfer, dye sublimation, continuous inkjet, and dye ablation. Additionally, the supplement contains brief explanations regarding screening technologies. Information for the process sup plement was gathered through manufacturers\u27 literature, interviews with pre press providers in the Rochester area, and interviews with technical representa tives from the manufacturers of devices which use the above digital, color out put technologies. Chapter Five, entitled Image Fidelity, simply illustrates how all of the current ly popular printing and proofing technologies affect graphics and imagery. Using the CD-Rom included with the guidebook, the reader may view magni fied and normal views of printing and proof sample imagery. Information noted by the reader in the proofing process supplement may then be actively applied when viewing these samples. Information and sample prints for the fifth chapter were gathered from several manufacturers and advertising agencies in the Rochester area. The sixth chapter, entitled The Acceptance of Digital Contract Proofing, discusses a new definition of the contract proof in regards to the evolution of digital proof ing. This chapter provides ideas for the designer, art director, and print buyer to realize when considering the use of digital contract proofing. Several questions are raised concerning what requirements a digital contract proof must fulfill depending upon the areas of its application and any agreements between the designer and prepress provider regarding their specific definition of a digital contract proof. Additionally, specific advantages of digital contract proofs, such as their ability to fingerprint a press and/or press run, are discussed. Finally, a discussion pertaining to the education of all users of digital proofing technolo gies is presented to aid the overall acceptance of digital contract proofing. Information for this chapter was obtained through the extensive interviews of leading technical and product oriented representatives from the manufacturers of currently used digital contract proofing systems. Many conclusions have been reached with the completion of this guidebook. In brief, the first and most prominent conclusion which may be reached states that the acceptance of digital contract proofing lies within the education of all designers, art directors and print buyers about digital printing and proofing technologies. As the use of digital contract proofing grows, education and inter est by all creative professionals will orient them towards their use of digital proofing systems. The next conclusion which has been reached is that the proper application of color printers and digital proofers is of major importance for the designer due to the added flexibility and rewards which result from the use of digital color out put devices throughout the creative and production processes. Another conclu sion which may be reached is that the display of proofing and printing process effects on text, graphics, and imagery serves to directly inform the creative pro fessional how these elements may be distorted by the utilized output device. Knowledge gained by the creative professional in regards to these effects helps to answer many questions regarding print or proof quality and proper output device application. Finally, additional knowledge gained by designers which pertains to proper viewing of all color output, color theories, color measurement, and proofing sub strates helps them to better communicate with those prepress and print professionals involved in the production process

    N-colour separation methods for accurate reproduction of spot colours

    Full text link
    In packaging, spot colours are used to print key information like brand logos and elements for which the colour accuracy is critical. The present study investigates methods to aid the accurate reproduction of these spot colours with the n-colour printing process. Typical n-colour printing systems consist of supplementary inks in addition to the usual CMYK inks. Adding these inks to the traditional CMYK set increases the attainable colour gamut, but the added complexity creates several challenges in generating suitable colour separations for rendering colour images. In this project, the n-colour separation is achieved by the use of additional sectors for intermediate inks. Each sector contains four inks with the achromatic ink (black) common to all sectors. This allows the extension of the principles of the CMYK printing process to these additional sectors. The methods developed in this study can be generalised to any number of inks. The project explores various aspects of the n-colour printing process including the forward characterisation methods, gamut prediction of the n-colour process and the inverse characterisation to calculate the n-colour separation for target spot colours. The scope of the study covers different printing technologies including lithographic offset, flexographic, thermal sublimation and inkjet printing. A new method is proposed to characterise the printing devices. This method, the spot colour overprint (SCOP) model, was evaluated for the n-colour printing process with different printing technologies. In addition, a set of real-world spot colours were converted to n-colour separations and printed with the 7-colour printing process to evaluate against the original spot colours. The results show that the proposed methods can be effectively used to replace the spot coloured inks with the n-colour printing process. This can save significant material, time and costs in the packaging industry

    Characterization of Halftone Prints based on Microscale Image Analysis

    Full text link

    An Analysis of Electronic Color Scanning Techniques for Application to the Dye Transfer Process

    Get PDF
    The dye transfer process is the photographic printing process used to produce the highest quality photographic prints to be submitted to printers for reproduction. Dye transfer prints are valued by advertising agencies for their highly saturated colors and ease of retouching. Photographers, museums, art galleries and collectors also value dye prints for the archival qualities. Dye transfer uses cyan, magenta, and yellow dyes to reproduce a color image. Photographic masking is used extensively for color correction, tone compression, and detail enhancement. The masks are projected with the original transparency to make continuous-tone separation negatives. Shallow-reliefgelatin positive-image matrices are made by exposure from light projected through the separation negatives. The matrices carry the dyes to the paper base for printing. The techniques used to produce the masks and separation negatives are so difficult, expensive, and imprecise that the future of the process is in jeopardy. Manufacturers of electronic color prepress systems and color separation labs would like to take over the market now served by the dye transfer labs. Existing computer graphics technology, however, cannot offer the same quality and capabilities. Electronic color scanners exist to simplify the photographic methods of masking and color separation. Electronic color scanning techniques techniques have reduced the time to produce color separations for printers from eight hours to thirty minutes. The amount of film used to make separations has been greatly reduced also. Analysis of electronic color scanning techniques could result in a similar savings of time and materials for dye transfer labs. Use of scanners to produce continuous-tone separation negatives for dye transfer would open a new market for scanner manufacturers and color separation labs. A less expensive method of producing dye transfer prints could allow a greater profit margin for the dye transfer labs and make the process more affordable for photographers. An experiment was conducted to determine if acceptable first -roll dye prints could be made from continuous-tone separations produced with a scanner. Comparison of the time and amount of materials required by the conventional photographic and scanner methods were made. Four judges with dye transfer process expertise determined that no significant differences of quality existed between a group of dye transfer prints produced by a conventional color separation method and a group produced by an electronic color scanning method. The hypothesis that separation negatives produced by electronic scanning will provide acceptable dye transfer prints that require minimal use of the printing controls, with greater consistency, than separation negatives produced by conventional photographic techniques for dye transfer prints was proved correct

    The development of multi-channel inkjet printing methodologies for fine art applications

    Get PDF
    This thesis contributes to the defence of the practitioner perspective as a means of undertaking problems addressed predominantly in the field of colour science. Whilst artists have been exploring the use of colour for centuries through their personal practice and education, the rise of industrialised printing processes has generated a shift in focus away from these creative pursuits and into the computational field of colour research. It is argued here that the disposition and knowledge generated by creative practice has significant value to offer developing technologies. While creative practice has limited influence in the development of colour printing, practitioners and users of technology actively engage with the process in ways that extend beyond its intended uses in order to overcome recognised shortcomings. Here consideration is given to this creative engagement as motivation to develop bespoke printing parameters that demonstrate the effects of colour mixing through methods alternative to standard workflows. The research is undertaken incorporating both qualitative and quantitative analysis, collecting data from visual assessments and by examining spectral measurements taken from printed output. Action research is employed to directly access and act upon the constant developments in the art and science disciplines related to inkjet printing, observing and engaging with current methods and techniques employed by practitioners and developers. This method of research has strongly informed the empirical testing that has formed this thesis’s contribution to fine art inkjet printing practice. The research follows a practitioner led approach to designing and testing alternative printing methods and is aimed at expanding the number of discernible colours an inkjet printer can reproduce. The application of this methodology is evidenced through demonstrative prints and a reproduction study undertaken at the National Gallery, London. The experimentation undertaken in partnership with the National Gallery has proven the ability to increase accuracy between colour measured from the original target and reproduction, beyond the capabilities of current inkjet printing workflows

    Modeling and Halftoning for Multichannel Printers: A Spectral Approach

    Get PDF
    Printing has been has been the major communication medium for many centuries. In the last twenty years, multichannel printing has brought new opportunities and challenges. Beside of extended colour gamut of the multichannel printer, the opportunity was presented to use a multichannel printer for ‘spectral printing’. The aim of spectral printing is typically the same as for colour printing; that is, to match input signal with printing specific ink combinations. In order to control printers so that the combination or mixture of inks results in specific colour or spectra requires a spectral reflectance printer model that estimates reflectance spectra from nominal dot coverage. The printer models have one of the key roles in accurate communication of colour to the printed media. Accordingly, this has been one of the most active research areas in printing. The research direction was toward improvement of the model accuracy, model simplicity and toward minimal resources used by the model in terms of computational power and usage of material. The contribution of the work included in the thesis is also directed toward improvement of the printer models but for the multichannel printing. The thesis is focused primarily on improving existing spectral printer models and developing a new model. In addition, the aim was to develop and implement a multichannel halftoning method which should provide with high image quality. Therefore, the research goals of the thesis were: maximal accuracy of printer models, optimal resource usage and maximal image quality of halftoning and whole spectral reproduction system. Maximal colour accuracy of a model but with the least resources used is achieved by optimizing printer model calibration process. First, estimation of the physical and optical dot gain is performed with newly proposed method and model. Second, a custom training target is estimated using the proposed new method. These two proposed methods and one proposed model were at the same time the means of optimal resource usage, both in computational time and material. The third goal was satisfied with newly proposed halftoning method for multichannel printing. This method also satisfies the goal of optimal computational time but with maintaining high image quality. When applied in spectral reproduction workflow, this halftoning reduces noise induced in an inversion of the printer model. Finally, a case study was conducted on the practical use of multichannel printers and spectral reproduction workflow. In addition to a gamut comparison in colour space, it is shown that otherwise limited reach of spectral printing could potentially be used to simulate spectra and colour of textile fabrics

    Test Targets 8.0: A Collaborative effort exploring the use of scientific methods for color imaging and process control

    Get PDF
    Publishing is both a journey and a destination. In the case of Test Targets, the act of creating and editing content, paginating and managing digital assets, represents the journey. The hard copy is the result or destination that readers can see and touch. Like the space exploration program, everyone saw the spacecraft that landed on the moon. It was the rocket booster that made the journey from the earth to the moon possible. This article portrays the process of capturing ideas in the form of digital data. It also describes the process of managing digital assets that produces the Test Targets publication

    A study of dot gain and gamut for prints made with highly pigmented inks

    Get PDF
    Visokopigmentirane boje imaju mogućnost s tanjim slojem boje prekriti rasterske elemente pri čemu je intezitet njihova obojenja veći u odnosu na klasične boje. Upotrebom takvih boja otisci dosegnu točku gdje se prirast rastertonske vrijednosti i prostor reprodukcije mijenja, a koja je usko povezana s granicama kvalitete otiska. Ovo je također izravno povezano sa standardizacijom tiska i ponovljivosti tiskarskog procesa. Upravo zbog toga naše istraživanje smo usmjerili na povećanje kvalitete reprodukcije upotrebom visokopigmetiranih boja. Otiskivanje je provedeno na dvije vrste papira koji se najčešće koriste u tehnici ofsetnog tiska. U ovome radu, kvaliteta reprodukcije vizualno je ispitivana s promjenjivim vrijednostima gustoće obojenja, prirastom rastertonskih vrijednosti i gamutu boja. Ovaj rad sadrži također i nove, preporučljive vrijednosti prirasta rastertonske vrijednosti i prostora reprodukcije boja kada se otiskivanje obavlja korištenjem visokopigmentiranih boja.Highly pigmented inks have the ability to cover screen elements with a thinner layer of ink applied whereby the intensity of their inking is higher compared to the classical inks. When using such inks, the printing reaches the point where the ink dot gain and the space of reproduction changes, which is closely related to the limits of the print quality. This is also directly related to the standardization of the print and the repeatability of the process. For this reason our research is focused on increasing the reproduction quality by using highly pigmented inks. The printing was carried out on two types of paper that were most commonly used in offset printing technology. In this paper, the reproduction quality was visually determined at changeable values of the inking densities, dot gain and gamut of colour. This paper also contains the new, recommended values of dot gain and gamut for printing processes using highly pigmented inks
    corecore