2,499 research outputs found

    Cluster-Based Load Balancing Algorithms for Grids

    Full text link
    E-science applications may require huge amounts of data and high processing power where grid infrastructures are very suitable for meeting these requirements. The load distribution in a grid may vary leading to the bottlenecks and overloaded sites. We describe a hierarchical dynamic load balancing protocol for Grids. The Grid consists of clusters and each cluster is represented by a coordinator. Each coordinator first attempts to balance the load in its cluster and if this fails, communicates with the other coordinators to perform transfer or reception of load. This process is repeated periodically. We analyze the correctness, performance and scalability of the proposed protocol and show from the simulation results that our algorithm balances the load by decreasing the number of high loaded nodes in a grid environment.Comment: 17 pages, 11 figures; International Journal of Computer Networks, volume3, number 5, 201

    Coalition Formation and Combinatorial Auctions; Applications to Self-organization and Self-management in Utility Computing

    Full text link
    In this paper we propose a two-stage protocol for resource management in a hierarchically organized cloud. The first stage exploits spatial locality for the formation of coalitions of supply agents; the second stage, a combinatorial auction, is based on a modified proxy-based clock algorithm and has two phases, a clock phase and a proxy phase. The clock phase supports price discovery; in the second phase a proxy conducts multiple rounds of a combinatorial auction for the package of services requested by each client. The protocol strikes a balance between low-cost services for cloud clients and a decent profit for the service providers. We also report the results of an empirical investigation of the combinatorial auction stage of the protocol.Comment: 14 page

    Integrating Energy Storage into the Smart Grid: A Prospect Theoretic Approach

    Full text link
    In this paper, the interactions and energy exchange decisions of a number of geographically distributed storage units are studied under decision-making involving end-users. In particular, a noncooperative game is formulated between customer-owned storage units where each storage unit's owner can decide on whether to charge or discharge energy with a given probability so as to maximize a utility that reflects the tradeoff between the monetary transactions from charging/discharging and the penalty from power regulation. Unlike existing game-theoretic works which assume that players make their decisions rationally and objectively, we use the new framework of prospect theory (PT) to explicitly incorporate the users' subjective perceptions of their expected utilities. For the two-player game, we show the existence of a proper mixed Nash equilibrium for both the standard game-theoretic case and the case with PT considerations. Simulation results show that incorporating user behavior via PT reveals several important insights into load management as well as economics of energy storage usage. For instance, the results show that deviations from conventional game theory, as predicted by PT, can lead to undesirable grid loads and revenues thus requiring the power company to revisit its pricing schemes and the customers to reassess their energy storage usage choices.Comment: 5 pages, 4 figures, conferenc

    Cost Based Optimization of Job Allocation in Computational Grids

    Get PDF
    Computational grids are distributed systems composed of heterogeneous computing resources which are distributed geographically and administratively. These highly scalable systems are designed to meet the large computational demands of many users from scientific and business orientations. Grid computing is a powerful concept, its chief appeal being the ability to make sure all of a resource’s computing power is used. In a grid world, the idle time of hundreds or thousands of resources could be harnessed and rented out to anyone who needed a massive infusion of processing power. First, the architecture of a grid system is presented. The design gives a mathematical model of the grid system for efficiently allocating the grids resources. The challenges faced for optimal job allocation motivate the exploration in optimizing grid resource allocations. We have extensively surveyed the current state of art in this area. A grid server coordinates the job allocation for the grid users and helps to select the best resources for a job among different possible resource offers with the best prices offered. Interaction between grid users and the resources require a mediator that uses different paradigm to communicate the needs of the two parties in terms of performance requirements, timing constraints, price charged etc. A game theoretic bargaining approach is studied to agree upon standard prices. We have implemented various job allocation schemes in computational grids based on the mathematical modeling of the grid system and bargaining protocol with the objective function of optimizing the cost. The performance of the schemes have been analyzed and compared. A new model for job allocation in computational grids has been proposed, for job allocation based on the clustering of resources
    corecore