2,587 research outputs found

    Feasibility of Using Discriminate Pricing Schemes for Energy Trading in Smart Grid

    Full text link
    This paper investigates the feasibility of using a discriminate pricing scheme to offset the inconvenience that is experienced by an energy user (EU) in trading its energy with an energy controller in smart grid. The main objective is to encourage EUs with small distributed energy resources (DERs), or with high sensitivity to their inconvenience, to take part in the energy trading via providing incentive to them with relatively higher payment at the same time as reducing the total cost to the energy controller. The proposed scheme is modeled through a two-stage Stackelberg game that describes the energy trading between a shared facility authority (SFA) and EUs in a smart community. A suitable cost function is proposed for the SFA to leverage the generation of discriminate pricing according to the inconvenience experienced by each EU. It is shown that the game has a unique sub-game perfect equilibrium (SPE), under the certain condition at which the SFA's total cost is minimized, and that each EU receives its best utility according to its associated inconvenience for the given price. A backward induction technique is used to derive a closed form expression for the price function at SPE, and thus the dependency of price on an EU's different decision parameters is explained for the studied system. Numerical examples are provided to show the beneficial properties of the proposed scheme.Comment: 7 pages, 4 figures, 3 tables, conference pape

    Improving the Scalability of a Prosumer Cooperative Game with K-Means Clustering

    Full text link
    Among the various market structures under peer-to-peer energy sharing, one model based on cooperative game theory provides clear incentives for prosumers to collaboratively schedule their energy resources. The computational complexity of this model, however, increases exponentially with the number of participants. To address this issue, this paper proposes the application of K-means clustering to the energy profiles following the grand coalition optimization. The cooperative model is run with the "clustered players" to compute their payoff allocations, which are then further distributed among the prosumers within each cluster. Case studies show that the proposed method can significantly improve the scalability of the cooperative scheme while maintaining a high level of financial incentives for the prosumers.Comment: 6 pages, 4 figures, 2 tables. Accepted to the 13th IEEE PES PowerTech Conference, 23-27 June 2019, Milano, Ital
    • …
    corecore