224 research outputs found

    A fair access mechanism based on TXOP in IEEE 802.11e wireless networks

    Get PDF
    IEEE 802.11e is an extension of IEEE 802.11 that provides Quality of Service (QoS) for the applications with different service requirements. This standard makes use of several parameters such as contention window; inter frame space time and transmission opportunity to create service differentiation in the network. Transmission opportunity (TXOP), that is the focus point of this paper, is the time interval, during which a station is allowed to transmit packets without any contention. As the fixed amounts of TXOPs are allocated to different stations, unfairness appears in the network. And when users with different data rates exist, IEEE 802.11e WLANs face the lack of fairness in the network. Because the higher data rate stations transfer more data than the lower rate ones. Several mechanisms have been proposed to solve this problem by generating new TXOPs adaptive to the network's traffic condition. In this paper, some proposed mechanisms are evaluated and according to their evaluated strengths and weaknesses, a new mechanism is proposed for TXOP determination in IEEE 802.11e wireless networks. Our new algorithm considers data rate, channel error rate and data packet lengths to calculate adaptive TXOPs for the stations. The simulation results show that the proposed algorithm leads to better fairness and also higher throughput and lower delays in the network.

    Distributed Rate Allocation Policies for Multi-Homed Video Streaming over Heterogeneous Access Networks

    Full text link
    We consider the problem of rate allocation among multiple simultaneous video streams sharing multiple heterogeneous access networks. We develop and evaluate an analytical framework for optimal rate allocation based on observed available bit rate (ABR) and round-trip time (RTT) over each access network and video distortion-rate (DR) characteristics. The rate allocation is formulated as a convex optimization problem that minimizes the total expected distortion of all video streams. We present a distributed approximation of its solution and compare its performance against H-infinity optimal control and two heuristic schemes based on TCP-style additive-increase-multiplicative decrease (AIMD) principles. The various rate allocation schemes are evaluated in simulations of multiple high-definition (HD) video streams sharing multiple access networks. Our results demonstrate that, in comparison with heuristic AIMD-based schemes, both media-aware allocation and H-infinity optimal control benefit from proactive congestion avoidance and reduce the average packet loss rate from 45% to below 2%. Improvement in average received video quality ranges between 1.5 to 10.7 dB in PSNR for various background traffic loads and video playout deadlines. Media-aware allocation further exploits its knowledge of the video DR characteristics to achieve a more balanced video quality among all streams.Comment: 12 pages, 22 figure

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Belaidžio ryšio tinklų terpės prieigos valdymo tyrimas

    Get PDF
    Over the years, consumer requirements for Quality of Service (QoS) has been growing exponentially. Recently, the ratification process of newly IEEE 802.11ad amendment to IEEE 802.11 was finished. The IEEE 802.11ad is the newly con-sumer wireless communication approach, which will gain high spot on the 5G evolution. Major players in wireless market, such as Qualcomm already are inte-grating solutions from unlicensed band, like IEEE 802.11ac, IEEE 802.11ad into their architecture of LTE PRO (the next evolutionary step for 5G networking) (Qualcomm 2013; Parker et al. 2015). As the demand is growing both in enter-prise wireless networking and home consumer markets. Consumers started to no-tice the performance degradation due to overcrowded unlicensed bands. The un-licensed bands such as 2.4 GHz, 5 GHz are widely used for up-to-date IEEE 802.11n/ac technologies with upcoming IEEE 802.11ax. However, overusage of the available frequency leads to severe interference issue and consequences in to-tal system performance degradation, currently existing wireless medium access method can not sustain the increasing intereference and thus wireless needs a new methods of wireless medium access. The main focal point of this dissertation is to improve wireless performance in dense wireless networks. In dissertation both the conceptual and multi-band wireless medium access methods are considered both from theoretical point of view and experimental usage. The introduction chapter presents the investigated problem and it’s objects of research as well as importance of dissertation and it’s scientific novelty in the unlicensed wireless field. Chapter 1 revises used literature. Existing and up-to-date state-of-the-art so-lution are reviewed, evaluated and key point advantages and disadvantages are analyzed. Conclusions are drawn at the end of the chapter. Chapter 2 describes theoretical analysis of wireless medium access protocols and the new wireless medium access method. During analysis theoretical simula-tions are performed. Conclusions are drawn at the end of the chapter. Chapter 3 is focused on the experimental components evaluation for multi-band system, which would be in line with theoretical concept investigations. The experimental results, showed that components of multi-band system can gain sig-nificant performance increase when compared to the existing IEEE 802.11n/ac wireless systems. General conclusions are drawn after analysis of measurement results
    corecore