9,658 research outputs found

    A New Game Invariant of Graphs: the Game Distinguishing Number

    Full text link
    The distinguishing number of a graph GG is a symmetry related graph invariant whose study started two decades ago. The distinguishing number D(G)D(G) is the least integer dd such that GG has a dd-distinguishing coloring. A distinguishing dd-coloring is a coloring c:V(G){1,...,d}c:V(G)\rightarrow\{1,...,d\} invariant only under the trivial automorphism. In this paper, we introduce a game variant of the distinguishing number. The distinguishing game is a game with two players, the Gentle and the Rascal, with antagonist goals. This game is played on a graph GG with a set of dNd\in\mathbb N^* colors. Alternately, the two players choose a vertex of GG and color it with one of the dd colors. The game ends when all the vertices have been colored. Then the Gentle wins if the coloring is distinguishing and the Rascal wins otherwise. This game leads to define two new invariants for a graph GG, which are the minimum numbers of colors needed to ensure that the Gentle has a winning strategy, depending on who starts. These invariants could be infinite, thus we start by giving sufficient conditions to have infinite game distinguishing numbers. We also show that for graphs with cyclic automorphisms group of prime odd order, both game invariants are finite. After that, we define a class of graphs, the involutive graphs, for which the game distinguishing number can be quadratically bounded above by the classical distinguishing number. The definition of this class is closely related to imprimitive actions whose blocks have size 22. Then, we apply results on involutive graphs to compute the exact value of these invariants for hypercubes and even cycles. Finally, we study odd cycles, for which we are able to compute the exact value when their order is not prime. In the prime order case, we give an upper bound of 33

    Strong geodetic problem on Cartesian products of graphs

    Get PDF
    The strong geodetic problem is a recent variation of the geodetic problem. For a graph GG, its strong geodetic number sg(G){\rm sg}(G) is the cardinality of a smallest vertex subset SS, such that each vertex of GG lies on a fixed shortest path between a pair of vertices from SS. In this paper, the strong geodetic problem is studied on the Cartesian product of graphs. A general upper bound for sg(GH){\rm sg}(G \,\square\, H) is determined, as well as exact values for KmKnK_m \,\square\, K_n, K1,kPlK_{1, k} \,\square\, P_l, and certain prisms. Connections between the strong geodetic number of a graph and its subgraphs are also discussed.Comment: 18 pages, 9 figure

    A probabilistic version of the game of Zombies and Survivors on graphs

    Get PDF
    We consider a new probabilistic graph searching game played on graphs, inspired by the familiar game of Cops and Robbers. In Zombies and Survivors, a set of zombies attempts to eat a lone survivor loose on a given graph. The zombies randomly choose their initial location, and during the course of the game, move directly toward the survivor. At each round, they move to the neighbouring vertex that minimizes the distance to the survivor; if there is more than one such vertex, then they choose one uniformly at random. The survivor attempts to escape from the zombies by moving to a neighbouring vertex or staying on his current vertex. The zombies win if eventually one of them eats the survivor by landing on their vertex; otherwise, the survivor wins. The zombie number of a graph is the minimum number of zombies needed to play such that the probability that they win is strictly greater than 1/2. We present asymptotic results for the zombie numbers of several graph families, such as cycles, hypercubes, incidence graphs of projective planes, and Cartesian and toroidal grids

    Binary Hypothesis Testing Game with Training Data

    Full text link
    We introduce a game-theoretic framework to study the hypothesis testing problem, in the presence of an adversary aiming at preventing a correct decision. Specifically, the paper considers a scenario in which an analyst has to decide whether a test sequence has been drawn according to a probability mass function (pmf) P_X or not. In turn, the goal of the adversary is to take a sequence generated according to a different pmf and modify it in such a way to induce a decision error. P_X is known only through one or more training sequences. We derive the asymptotic equilibrium of the game under the assumption that the analyst relies only on first order statistics of the test sequence, and compute the asymptotic payoff of the game when the length of the test sequence tends to infinity. We introduce the concept of indistinguishability region, as the set of pmf's that can not be distinguished reliably from P_X in the presence of attacks. Two different scenarios are considered: in the first one the analyst and the adversary share the same training sequence, in the second scenario, they rely on independent sequences. The obtained results are compared to a version of the game in which the pmf P_X is perfectly known to the analyst and the adversary
    corecore