154,069 research outputs found

    The delayed time distribution of massive double compact star mergers

    Full text link
    In order to investigate the temporal evolution of binary populations in general, double compact star binaries and mergers in particular within a galactic evolution context, a most straightforward method is obviously the implementation of a detailed binary evolutionary model in a galactic chemical evolution code. To our knowledge, the Brussels galactic chemical evolution code is the only one that fully consistently accounts for the important effects of interacting binaries on the predictions of chemical evolution. With a galactic code that does not explicitly include binaries, the temporal evolution of the population of double compact star binaries and mergers can be estimated with reasonable accuracy if the delayed time distribution (DTD) for these mergers is available. The DTD for supernovae type Ia has been studied extensively the last decade. In the present paper we present the DTD for merging double neutron star binaries and mixed systems consisting of a neutron star and a black hole. The latter mergers are very promising sites for the production of r-process elements and the DTDs can be used to study the galactic evolution of these elements with a code that does not explicitly account for binaries.Comment: 7 pages, 5 figures, accepted for publication in A&A; accepted versio

    Galactic Evolution of Nitrogen

    Full text link
    We present detailed spectroscopic analysis of nitrogen abundances in 31 unevolved metal-poor stars analysed by spectral synthesis of the near-UV NH band at 3360 A observed at high resolution with various telescopes. We found that [N/Fe] scales with that of iron in the metallicity range -3.1 < [Fe/H] <0 with the slope 0.01+-0.02. Furthermore, we derive uniform and accurate (N/O) ratios using oxygen abundances from near-UV OH lines obtained in our previous studies. We find that a primary component of nitrogen is required to explain the observations. The NH lines are discovered in the VLT/UVES spectra of the very metal-poor subdwarfs G64-12 and LP815-43 indicating that these stars are N rich. The results are compared with theoretical models and observations of extragalactic HII regions and Damped Lyα\alpha systems. This is the first direct comparison of the (N/O) ratios in these objects with those in Galactic stars.Comment: 10 pages, 6 figures, to appear in Astronomy and Astrophysic

    Contribution of White Dwarfs to Cluster Masses

    Get PDF
    I present a literature search through 31 July 1997 of white dwarfs (WDs) in open and globular clusters. There are 36 single WDs and 5 WDs in binaries known among 13 open clusters, and 340 single WDs and 11 WDs in binaries known among 11 globular clusters. From these data I have calculated WD mass fractions for four open clusters (the Pleiades, NGC 2168, NGC 3532, and the Hyades) and one globular cluster (NGC 6121). I develop a simple model of cluster evolution that incorporates stellar evolution but not dynamical evolution to interpret the WD mass fractions. I augment the results of my simple model with N-body simulations incorporating stellar evolution (Terlevich 1987; de la Feunte Marcos 1996; Vesperini & Heggie 1997). I find that even though these clusters undergo moderate to strong kinematical evolution the WD mass fraction is relatively insensitive to kinematical evolution. By comparing the cluster mass functions to that of the Galactic disk, and incorporating plausibility arguments for the mass function of the Galactic halo, I estimate the WD mass fraction in these two populations. I assume the Galactic disk is ~10 Gyrs old (Winget et al. 1987; Liebert, Dahn, & Monet 1988; Oswalt et al. 1996) and that the Galactic halo is ~12 Gyrs old (Reid 1997b; Gratton et al. 1997; Chaboyer et al. 1998), although the WD mass fraction is insensitive to age in this range. I find that the Galactic halo should contain 8 to 9% (alpha = -2.35) or perhaps as much as 15 to 17% (alpha = -2.0) of its stellar mass in the form of WDs. The Galactic disk WD mass fraction should be 6 to 7% (alpha = -2.35), consistent with the empirical estimates of 3 to 7% (Liebert, Dahn, & Monet 1988; Oswalt et al. 1996). (abridged)Comment: 20 pages, uuencoded gunzip'ed latex + 3 postscrip figures, to be published in AJ, April, 199

    Lithium-Beryllium-Boron : Origin and Evolution

    Get PDF
    The origin and evolution of Lithium-Beryllium-Boron is a crossing point between different astrophysical fields : optical and gamma spectroscopy, non thermal nucleosynthesis, Big Bang and stellar nucleosynthesis and finally galactic evolution. We describe the production and the evolution of Lithium-Beryllium-Boron from Big Bang up to now through the interaction of the Standard Galactic Cosmic Rays with the interstellar medium, supernova neutrino spallation and a low energy component related to supernova explosions in galactic superbubbles.Comment: 28 pages, 7 figures, to be published in a special memorial volume of Physics Reports in honor of David Schram

    Cluster Magnetic Fields from Galactic Outflows

    Full text link
    We performed cosmological, magneto-hydrodynamical simulations to follow the evolution of magnetic fields in galaxy clusters, exploring the possibility that the origin of the magnetic seed fields are galactic outflows during the star-burst phase of galactic evolution. To do this we coupled a semi-analytical model for magnetized galactic winds as suggested by \citet{2006MNRAS.370..319B} to our cosmological simulation. We find that the strength and structure of magnetic fields observed in galaxy clusters are well reproduced for a wide range of model parameters for the magnetized, galactic winds and do only weakly depend on the exact magnetic structure within the assumed galactic outflows. Although the evolution of a primordial magnetic seed field shows no significant differences to that of galaxy clusters fields from previous studies, we find that the magnetic field pollution in the diffuse medium within filaments is below the level predicted by scenarios with pure primordial magnetic seed field. We therefore conclude that magnetized galactic outflows and their subsequent evolution within the intra-cluster medium can fully account for the observed magnetic fields in galaxy clusters. Our findings also suggest that measuring cosmological magnetic fields in low-density environments such as filaments is much more useful than observing cluster magnetic fields to infer their possible origin.Comment: Minor revision for publication in MNRA

    JINA-NuGrid Galactic Chemical Evolution Pipeline

    Full text link
    Galactic chemical evolution is a topic that involves nuclear physics, stellar evolution, galaxy evolution, observation, and cosmology. Continuous communication and feedback between these fields is a key component in improving our understanding of how galaxies form and how elements are created and recycled in galaxies and intergalactic space. In this proceedings, we present the current state of the JINA-NuGrid chemical evolution pipeline. It is designed to probe the impact of nuclear astrophysics uncertainties on galactic chemical evolution, to improve our knowledges regarding the origin of the elements in a cosmological context, and to create the required interdisciplinary connections.Comment: 3 pages, 2 figures, submitted to JPS Conference Proceedings, Nuclei in the Cosmos XI

    Galactic disks and their evolution

    Full text link
    We consider the key problems related to measuring the mass of stellar disks and dark halos in galaxies and to explaining the observed properties of disks formed in massive dark halos.Comment: 6 pages, 2 figure
    corecore