18,013 research outputs found

    On R-duals and the duality principle in Gabor analysis

    Full text link
    The concept of R-duals of a frame was introduced by Casazza, Kutyniok and Lammers in 2004, with the motivation to obtain a general version of the duality principle in Gabor analysis. For tight Gabor frames and Gabor Riesz bases the three authors were actually able to show that the duality principle is a special case of general results for R-duals. In this paper we introduce various alternative R-duals, with focus on what we call R-duals of type II and III. We show how they are related and provide characterizations of the R-duals of type II and III. In particular, we prove that for tight frames these classes coincide with the R-duals by Casazza et el., which is desirable in the sense that the motivating case of tight Gabor frames already is well covered by these R-duals. On the other hand, all the introduced types of R-duals generalize the duality principle for larger classes of Gabor frames than just the tight frames and the Riesz bases; in particular, the R-duals of type III cover the duality principle for all Gabor frames

    Gabor Frames on Local Fields of Positive Characteristic

    Full text link
    Gabor frames have gained considerable popularity during the past decade, primarily due to their substantiated applications in diverse and widespread fields of engineering and science. Finding general and verifiable conditions which imply that the Gabor systems are Gabor frames is among the core problems in time-frequency analysis. In this paper, we give some simple and sufficient conditions that ensure a Gabor system Mu(m)bTu(n)ag:m,nN0{M_{u(m)b}T_{u(n)a}g:m,n\in \mathbb N_{0}} to be a frame for L^2(K). The conditions proposed are stated in terms of the Fourier transforms of the Gabor system's generating functions.Comment: 11. arXiv admin note: text overlap with arXiv:1312.0443, arXiv:1103.0090 by other author

    Co-compact Gabor systems on locally compact abelian groups

    Full text link
    In this work we extend classical structure and duality results in Gabor analysis on the euclidean space to the setting of second countable locally compact abelian (LCA) groups. We formulate the concept of rationally oversampling of Gabor systems in an LCA group and prove corresponding characterization results via the Zak transform. From these results we derive non-existence results for critically sampled continuous Gabor frames. We obtain general characterizations in time and in frequency domain of when two Gabor generators yield dual frames. Moreover, we prove the Walnut and Janssen representation of the Gabor frame operator and consider the Wexler-Raz biorthogonality relations for dual generators. Finally, we prove the duality principle for Gabor frames. Unlike most duality results on Gabor systems, we do not rely on the fact that the translation and modulation groups are discrete and co-compact subgroups. Our results only rely on the assumption that either one of the translation and modulation group (in some cases both) are co-compact subgroups of the time and frequency domain. This presentation offers a unified approach to the study of continuous and the discrete Gabor frames.Comment: Paper (v2) shortened. To appear in J. Fourier Anal. App

    Gabor Duality Theory for Morita Equivalent CC^*-algebras

    Full text link
    The duality principle for Gabor frames is one of the pillars of Gabor analysis. We establish a far-reaching generalization to Morita equivalent CC^*-algebras where the equivalence bimodule is a finitely generated projective Hilbert CC^*-module. These Hilbert CC^*-modules are equipped with some extra structure and are called Gabor bimodules. We formulate a duality principle for standard module frames for Gabor bimodules which reduces to the well-known Gabor duality principle for twisted group CC^*-algebras of a lattice in phase space. We lift all these results to the matrix algebra level and in the description of the module frames associated to a matrix Gabor bimodule we introduce (n,d)(n,d)-matrix frames, which generalize superframes and multi-window frames. Density theorems for (n,d)(n,d)-matrix frames are established, which extend the ones for multi-window and super Gabor frames. Our approach is based on the localization of a Hilbert CC^*-module with respect to a trace.Comment: 36 page
    corecore