17,571 research outputs found
Application of GaBi software in identifying potential environmental impacts in fabrication of 3D bone tissue engineering
– 3D printing technology has evolved over
the years. There are many types of 3D printing methods
introduced in this technology. As 3D technology
continues to develop, medical industry technology
follows the trend to ensure continuity in the medical and
healthcare industry by being involved in the development
of tissue engineering scaffold fabrication through 3D
printing. One of the 3D printing methods is the
fabrication of 3D bone tissue engineering scaffolds by 3D
Digital Light Processing (DLP). Although 3D DLP
methods in the fabrication of tissue engineering scaffolds
help researchers develop new inventions, it might affect
environmental sustainability. Therefore, the application
of GaBi software will be applied in order to evaluate and
identify the environmental impacts. Hence, this research
paper will apply GaBi software as tool to analyse the
fabrication of tissue engineering scaffolds in 3D DLP and
determine the potential environmental impacts of this
process. From the GaBi software analysis, this research
will show the potential emissions that contribute to the
environment that comes from 3D DLP operations. This
research will contribute to 3D bone tissue engineering
development to include environmental sustainability in
each of the research and development involved in this
technology
Developing a LCA software in Hungary
In Hungary the first steps of LCA application can be observed. The objectives of the project are to establish a
fundamental online database of LCA compatibility with international software. This database can help designing
from the aspect of environment and can be used in education and research. We have classified the domestic
power plants on the basis of applied technology and energy sources. But data collection presents some difficulty.
Complex analysis of electric- and electronic equipment would be another important scope of the system. And we
would like to popularize the LCA application for the small and medium sized enterprises
A Comparative Life Cycle Assessment between a Metered Dose Inhaler and Electric Nebulizer
Life cycle assessment (LCA) evaluates the environmental impact of a product based on the materials and processes used to manufacture the item as well as the item’s use and disposal. The objective of this LCA was to evaluate and compare the environmental impact of a metered dose inhaler, specifically the Proventil® HFA inhaler (Merk & Co., Inc., Kenilworth, NJ, USA), and an electric nebulizer, specifically the DeVilbiss Pulmo-Aide® nebulizer (DeVilbiss, Port Washington, NY, USA). GaBi LCA software was used to model the global warming potential (GWP) of each product by using substantiated data and well-justified assumptions for the components, manufacturing, assembly, and use of both devices. The functional unit used to model each device was one dose of the active drug, albuterol sulfate. The inhaler’s GWP, 0.0972 kg CO2-eq, was greater than the nebulizer’s even when uncertain parameters were varied ±100x. During the use phase ofa the inhaler, which accounted for approximately 96% of the inhaler’s total GWP, HFA 134a is used as a propellant to deliver the drug. The total GWP for the electric nebulizer was 0.0294 kg CO2-eq assuming that the mouthpiece was cleaned in a dishwasher, while it was 0.0477 kg CO2-eq when the nebulizer mouthpiece was hand washed between uses. The GWP breakeven scenario between dishwashing and hand washing occurred when the mouthpiece accounted for 10% of the dishwasher load
Potential impacts for monitoring sustainability: case study of hollow fiber membrane
Sustainability level is a new indicator of quality and efficiency for product life cycle. Sustainability should be balanced among Triple Bottom Line (TBL) aspects namely environmental, economic and social elements. For monitoring the sustainability of product, a comprehensive framework considering potential impacts for sustainability assessment should be developed. Previously, several studies presented frameworks to assess the sustainability level. However, few studies relate their frameworks with the potential impact of all TBL. Determination of potential impacts with its parameter is important during framework development. Potential impacts for environmental such global warming, acidification and eutrophication should be taken seriously. In this study, potential impacts for each sustainability aspects are shown. For the case study of hollow fiber membrane the potential impacts were obtained from primary and secondary data such product specification, bill of materials, literature reviews and help of GaBi Software
Transportation Life Cycle Assessment Synthesis: Life Cycle Assessment Learning Module Series
The Life Cycle Assessment Learning Module Series is a set of narrated, self-advancing slideshows on various topics related to environmental life cycle assessment (LCA). This research project produced the first 27 of such modules, which are freely available for download on the CESTiCC website http://cem.uaf.edu/cesticc/publications/lca.aspx. Each module is roughly 15- 20 minutes in length and is intended for various uses such as course components, as the main lecture material in a dedicated LCA course, or for independent learning in support of research projects. The series is organized into four overall topical areas, each of which contain a group of overview modules and a group of detailed modules. The A and α groups cover the international standards that define LCA. The B and β groups focus on environmental impact categories. The G and γ groups identify software tools for LCA and provide some tutorials for their use. The T and τ groups introduce topics of interest in the field of transportation LCA. This includes overviews of how LCA is frequently applied in that sector, literature reviews, specific considerations, and software tutorials. Future modules in this category will feature methodological developments and case studies specific to the transportation sector
Evaluation of the economic and environmental performance of low-temperature heat to power conversion using a reverse electrodialysis - Multi-effect distillation system
In the examined heat engine, reverse electrodialysis (RED) is used to generate electricity from the salinity difference between two artificial solutions. The salinity gradient is restored through a multi-effect distillation system (MED) powered by low-temperature waste heat at 100 ◦C. The current work presents the first comprehensive economic and environmental analysis of this advanced concept, when varying the number of MED effects, the system sizing, the salt of the solutions, and other key parameters. The levelized cost of electricity (LCOE) has been calculated, showing that competitive solutions can be reached only when the system is at least medium to large scale. The lowest LCOE, at about 0.03 €/kWh, is achieved using potassium acetate salt and six MED effects while reheating the solutions. A similar analysis has been conducted when using the system in energy storage mode, where the two regenerated solutions are stored in reservoir tanks and the RED is operating for a few hours per day, supplying valuable peak power, resulting in a LCOE just below 0.10 €/kWh. A life-cycle assessment has been also carried out, showing that the case with the lowest environmental impact is the same as the one with the most attractive economic performance. Results indicate that the material manufacturing has the main impact; primarily the metallic parts of the MED. Overall, this study highlights the development efforts required in terms of both membrane performance and cost reduction, in order to make this technology cost effective in the future
Exciton condensation driving the periodic lattice distortion of 1T-TiSe2
We address the lattice instability of 1T-TiSe2 in the framework of the
exciton condensate phase. We show that, at low temperature, condensed excitons
influence the lattice through electron-phonon interaction. It is found that at
zero temperature, in the exciton condensate phase of 1T-TiSe2, this exciton
condensate exerts a force on the lattice generating ionic displacements
comparable in amplitude to what is measured in experiment. This is thus the
first quantitative estimation of the amplitude of the periodic lattice
distortion observed in 1T-TiSe2 as a consequence of the exciton condensate
phase.Comment: 5 pages, 3 figures and 1 tabl
A GPU-accelerated Direct-sum Boundary Integral Poisson-Boltzmann Solver
In this paper, we present a GPU-accelerated direct-sum boundary integral
method to solve the linear Poisson-Boltzmann (PB) equation. In our method, a
well-posed boundary integral formulation is used to ensure the fast convergence
of Krylov subspace based linear algebraic solver such as the GMRES. The
molecular surfaces are discretized with flat triangles and centroid
collocation. To speed up our method, we take advantage of the parallel nature
of the boundary integral formulation and parallelize the schemes within CUDA
shared memory architecture on GPU. The schemes use only
size-of-double device memory for a biomolecule with triangular surface
elements and partial charges. Numerical tests of these schemes show
well-maintained accuracy and fast convergence. The GPU implementation using one
GPU card (Nvidia Tesla M2070) achieves 120-150X speed-up to the implementation
using one CPU (Intel L5640 2.27GHz). With our approach, solving PB equations on
well-discretized molecular surfaces with up to 300,000 boundary elements will
take less than about 10 minutes, hence our approach is particularly suitable
for fast electrostatics computations on small to medium biomolecules
Mutation of Arabidopsis SPLICEOSOMAL TIMEKEEPER LOCUS1 Causes Circadian Clock Defects
The circadian clock plays a crucial role in coordinating plant metabolic and physiological functions with predictable environmental variables, such as dusk and dawn, while also modulating responses to biotic and abiotic challenges. Much of the initial characterization of the circadian system has focused on transcriptional initiation, but it is now apparent that considerable regulation is exerted after this key regulatory step. Transcript processing, protein stability, and cofactor availability have all been reported to influence circadian rhythms in a variety of species. We used a genetic screen to identify a mutation within a putative RNA binding protein (SPLICEOSOMAL TIMEKEEPER LOCUS1 [STIPL1]) that induces a long circadian period phenotype under constant conditions. STIPL1 is a homolog of the spliceosomal proteins TFP11 (Homo sapiens) and Ntr1p (Saccharomyces cerevisiae) involved in spliceosome disassembly. Analysis of general and alternative splicing using a high-resolution RT-PCR system revealed that mutation of this protein causes less efficient splicing of most but not all of the introns analyzed. In particular, the altered accumulation of circadian-associated transcripts may contribute to the observed mutant phenotype. Interestingly, mutation of a close homolog of STIPL1, STIP-LIKE2, does not cause a circadian phenotype, which suggests divergence in function between these family members. Our work highlights the importance of posttranscriptional control within the clock mechanism. © 2012 American Society of Plant Biologists. All rights reserved
- …
