198,214 research outputs found
Effect of n+-GaAs thickness and doping density on spin injection of GaMnAs/n+-GaAs Esaki tunnel junction
We investigated the influence of n+-GaAs thickness and doping density of
GaMnAs/n+-GaAs Esaki tunnel junction on the efficiency of the electrical
electron spin injection. We prepared seven samples of GaMnAs/n+-GaAs tunnel
junctions with different n+-GaAs thickness and doping density grown on
identical p-AlGaAs/p-GaAs/n-AlGaAs light emitting diode (LED) structures.
Electroluminescence (EL) polarization of the surface emission was measured
under the Faraday configuration with external magnetic field. All samples have
the bias dependence of the EL polarization, and higher EL polarization is
obtained in samples in which n+-GaAs is completely depleted at zero bias. The
EL polarization is found to be sensitive to the bias condition for both the
(Ga,Mn)As/n+-GaAs tunnel junction and the LED structure.Comment: 4pages, 4figures, 1table, To appear in Physica
Magnetization in AIIIBV semiconductor heterostructures with the depletion layer of manganese
The magnetic moment and magnetization in GaAs/GaInAs/GaAs
heterostructures with Mn deluted in GaAs cover layers and with atomically
controlled Mn -layer thicknesses near GaInAs-quantum well (3 nm)
in temperature range T=(1.8-300)K in magnetic field up to 50 kOe have been
investigated. The mass magnetization all of the samples of
GaAs/GaInAs/GaAs with Mn increases with the increasing of the
magnetic field that pointed out on the presence of low-dimensional
ferromagnetism in the manganese depletion layer of GaAs based structures. It
has been estimated the manganese content threshold at which the ferromagnetic
ordering was found.Comment: 8 pages, 3 figure
Sequential nature of damage annealing and activation in implanted GaAs
Rapid thermal processing of implanted GaAs reveals a definitive sequence in the damage annealing and the electrical activation of ions. Removal of implantation-induced damage and restoration of GaAs crystallinity occurs first. Irrespective of implanted species, at this stage the GaAs is n-type and highly resistive with almost ideal values of electron mobility. Electrical activation is achieved next when, in a narrow anneal temperature window, the material becomes n- or p-type, or remains semi-insulating, commensurate to the chemical nature of the implanted ion. Such a two-step sequence in the electrical doping of GaAs by ion implantation may be unique of GaAs and other compound semiconductors
Detection of the magneto-structural phase coexistence in MnAs epilayers at a very early stage
We report on the appearance of magnetic stripes in MnAs/GaAs(100) epilayers
at temperatures well below the ferromagnetic transition of the system. The
study has been performed by ferromagnetic resonance experiments (FMR) on MnAs
epilayers grown on (100) and (111) GaAs substrates. The FMR spectra of the
MnAs/GaAs(100) samples at 180 K reveal the appearance of zones of different
magnetic behavior with respect to the low-temperature homogeneous ferromagnetic
phase. The angular and the temperature dependence of the spectra serve us to
detect the inter-growth of the non-magnetic phase into the ferromagnetic phase
at a very early stage of the process. The experimental data show that the new
phase nucleates in a self-arranged array of stripes in MnAs/GaAs(100) thin
films while it grows randomly in the same films grown on GaAs(111).Comment: 8 pages, 5 figure
Growth control of GaAs nanowires using pulsed laser deposition with arsenic over pressure
Using pulsed laser ablation with arsenic over pressure, the growth conditions
for GaAs nanowires have been systematically investigated and optimized. Arsenic
over pressure with As molecules was introduced to the system by thermal
decomposition of polycrystalline GaAs to control the stoichiometry and shape of
the nanowires during growth. GaAs nanowires exhibit a variety of geometries
under varying arsenic over pressure, which can be understood by different
growth processes via vapor-liquid-solid mechanism. Single-crystal GaAs
nanowires with uniform diameter, lengths over 20 m, and thin surface oxide
layer were obtained and can potentially be used for further electronic
characterization
Ferromagnetism and interlayer exchange coupling in short period (Ga,Mn)As/GaAs superlattices
Magnetic properties of (Ga,Mn)As/GaAs superlattices are investigated. The
structures contain magnetic (Ga,Mn)As layers, separated by thin layers of
non-magnetic GaAs spacer. The short period GaMnAs/GaAs
superlattices exhibit a paramagnetic-to-ferromagnetic phase transition close to
60K, for thicknesses of (Ga,Mn)As down to 23 \AA. For
GaMnAs/GaAs superlattices of similar dimensions, the Curie
temperature associated with the ferromagnetic transition is found to oscillate
with the thickness of non magnetic spacer. The observed oscillations are
related to an interlayer exchange interaction mediated by the polarized holes
of the (Ga,Mn)As layers.Comment: REVTeX 4 style; 4 pages, 2 figure
Strong extinction of a far-field laser beam by a single quantum dot
Through the utilization of index-matched GaAs immersion lens techniques we
demonstrate a record extinction (12%) of a far-field focused laser by a single
InAs/GaAs quantum dot. This contrast level enables us to report for the first
time resonant laser transmission spectroscopy on a single InAs/GaAs quantum dot
without the need for phase-sensitive lock-in detection
Predicion of charge separation in GaAs/AlAs cylindrical Russian Doll nanostructures
We have contrasted the quantum confinement of (i) multiple quantum wells of
flat GaAs and AlAs layers, i.e. (\GaAs)_{m}/(\AlAs)_n/(\GaAs)_p/(\AlAs)_q,
with (ii) ``cylindrical Russian Dolls'' -- an equivalent sequence of wells and
barriers arranged as concentric wires. Using a pseudopotential plane-wave
calculation, we identified theoretically a set of numbers ( and )
such that charge separation can exist in ``cylindrical Russian Dolls'': the CBM
is localized in the inner GaAs layer, while the VBM is localized in the outer
GaAs layer.Comment: latex, 8 page
- …
