10,221 research outputs found

    Baikal-GVD: status and prospects

    Full text link
    Baikal-GVD is a next generation, kilometer-scale neutrino telescope under construction in Lake Baikal. It is designed to detect astrophysical neutrino fluxes at energies from a few TeV up to 100 PeV. GVD is formed by multi-megaton subarrays (clusters). The array construction started in 2015 by deployment of a reduced-size demonstration cluster named "Dubna". The first cluster in its baseline configuration was deployed in 2016, the second in 2017 and the third in 2018. The full scale GVD will be an array of ~10000 light sensors with an instrumented volume of about 2 cubic km. The first phase (GVD-1) is planned to be completed by 2020-2021. It will comprise 8 clusters with 2304 light sensors in total. We describe the design of Baikal-GVD and present selected results obtained in 2015-2017.Comment: 9 pages, 8 figures. Conference proceedings for QUARKS201

    Off-diagonal generalized vector dominance in DIS and QCD

    Get PDF
    We review the generalized vector dominance (GVD) approach to DIS at small values of the scaling variable, x. In particular, we concentrate on a recent formulation of GVD that explicitly incorporates the configuration of the gamma^* -> q qbar transition and a QCD-inspired ansatz for the (qqbar)p scattering amplitude. The destructive interference, originally introduced in off-diagonal GVD is traced back to the generic strcuture of two-gluon exchange. Asymptotically, the transverse photoabsorption cross section behaves as (ln Q^2)/Q^2, implying a logarithmic violation of scaling for F_2, while the longitudinal-to-transverse ratio decreases as 1/\ln Q^2. We also briefly comment on vector-meson production.Comment: 21 pages latex, 12 postscript files for figures, talk given at the XXI School of Theoretical Physics, Ustron, Poland, September 199

    On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range

    Full text link
    Optical whispering gallery mode (WGM) resonators have been very attracting platforms for versatile Kerr frequency comb generations. We report a systematic study on the material dispersion of various optical materials that are capable of supporting quality factors above 10910^9. Using an analytical approximation of WGM resonant frequencies in disk resonators, we investigate the effect of the geometry and transverse mode order on the total group-velocity dispersion (GVDGVD). We demonstrate that the major radii and the radial mode indices play an important role in tailoring the GVDGVD of WGM resonators. In particular, our study shows that in WGM disk-resonators, the polar families of modes have very similar GVDGVD, while the radial families of modes feature dispersion values that can differ by up to several orders of magnitude. The effect of these giant dispersion shifts are experimentally evidenced in Kerr comb generation with magnesium fluoride. From a more general perspective, this critical feature enables to push the zero-dispersion wavelength of fluorite crystals towards the mid-infrared (mid-IR) range, thereby allowing for efficient Kerr comb generation in that spectral range. We show that barium fluoride is the most interesting crystal in this regard, due to its zero dispersion wavelength (ZDWZDW) at 1.93μm1.93 \rm{\mu m} and an optimal dispersion profile in the mid-IR regime. We expect our results to facilitate the design of different platforms for Kerr frequency comb generations in both telecommunication and mid-IR spectral ranges

    Dual-pumped degenerate Kerr oscillator in a silicon nitride microresonator

    Full text link
    We demonstrate a degenerate parametric oscillator in a silicon-nitride microresonator. We use two frequency-detuned pump waves to perform parametric four-wave mixing and operate in the normal group-velocity dispersion regime to produce signal and idler fields that are frequency degenerate. Our theoretical modeling shows that this regime enables generation of bimodal phase states, analogous to the \c{hi}(2)-based degenerate OPO. Our system offers potential for realization of CMOS-chip-based coherent optical computing and an all-optical quantum random number generator

    Deep inelastic scattering and "elastic" diffraction

    Get PDF
    We examine the total cross section of virtual photons on protons, σγp(W2,Q2)\sigma_{\gamma^* p}(W^2,Q^2), at low xQ2/W21x \cong Q^2/W^2 \ll 1 and its connection with ``elastic'' diffractive production γT,LpXT,LJ=1p\gamma^*_{T,L}p \to X^{J=1}_{T,L} p in the two-gluon exchange dynamics for the virtual forward Compton scattering amplitude. Solely based on the generic structure of two-gluon exchange, we establish that the cross section is described by the (imaginary part of the) amplitude for forward scattering of qqˉq \bar q vector states, (qqˉ)T,LJ=1p(qqˉ)T,LJ=1p(q \bar q)^{J=1}_{T,L} p \to (q \bar q)^ {J=1}_{T,L} p. The generalized vector dominance/color dipole picture (GVD/CDP) is accordingly established to only rest on the two-gluon-exchange generic structure. This is explicitly seen by the sum rules that allow one to directly relate the total cross section to the cross section for elastic diffractive forward production, γT,Lp(qqˉ)T,LJ=1p\gamma^*_{T,L} p\to (q \bar q)^{J=1}_{T,L} p, of vector states.Comment: 24 pages, latex file with three eps figures. BI-TP 2002/2
    corecore