1,206 research outputs found
Multiregional Satellite Precipitation Products Evaluation over Complex Terrain
An extensive evaluation of nine global-scale high-resolution satellite-based rainfall (SBR) products is performed using a minimum of 6 years (within the period of 2000-13) of reference rainfall data derived from rain gauge networks in nine mountainous regions across the globe. The SBR products are compared to a recently released global reanalysis dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF). The study areas include the eastern Italian Alps, the Swiss Alps, the western Black Sea of Turkey, the French Cévennes, the Peruvian Andes, the Colombian Andes, the Himalayas over Nepal, the Blue Nile in East Africa, Taiwan, and the U.S. Rocky Mountains. Evaluation is performed at annual, monthly, and daily time scales and 0.25° spatial resolution. The SBR datasets are based on the following retrieval algorithms: Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA), the NOAA/Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN), and Global Satellite Mapping of Precipitation (GSMaP). SBR products are categorized into those that include gauge adjustment versus unadjusted. Results show that performance of SBR is highly dependent on the rainfall variability. Many SBR products usually underestimate wet season and overestimate dry season precipitation. The performance of gauge adjustment to the SBR products varies by region and depends greatly on the representativeness of the rain gauge network
MSWEP : 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data
Current global precipitation (P) datasets do not take full advantage of the complementary nature of satellite and reanalysis data. Here, we present Multi-Source Weighted-Ensemble Precipitation (MSWEP) version 1.1, a global P dataset for the period 1979-2015 with a 3hourly temporal and 0.25 degrees ffi spatial resolution, specifically designed for hydrological modeling. The design philosophy of MSWEP was to optimally merge the highest quality P data sources available as a function of timescale and location. The long-term mean of MSWEP was based on the CHPclim dataset but replaced with more accurate regional datasets where available. A correction for gauge under-catch and orographic effects was introduced by inferring catchment-average P from streamflow (Q) observations at 13 762 stations across the globe. The temporal variability of MSWEP was determined by weighted averaging of P anomalies from seven datasets; two based solely on interpolation of gauge observations (CPC Unified and GPCC), three on satellite remote sensing (CMORPH, GSMaP-MVK, and TMPA 3B42RT), and two on atmospheric model reanalysis (ERA-Interim and JRA-55). For each grid cell, the weight assigned to the gauge-based estimates was calculated from the gauge network density, while the weights assigned to the satellite-and reanalysis-based estimates were calculated from their comparative performance at the surrounding gauges. The quality of MSWEP was compared against four state-of-the-art gauge-adjusted P datasets (WFDEI-CRU, GPCP-1DD, TMPA 3B42, and CPC Unified) using independent P data from 125 FLUXNET tower stations around the globe. MSWEP obtained the highest daily correlation coefficient (R) among the five P datasets for 60.0% of the stations and a median R of 0.67 vs. 0.44-0.59 for the other datasets. We further evaluated the performance of MSWEP using hydrological modeling for 9011 catchments (< 50 000 km(2)) across the globe. Specifically, we calibrated the simple conceptual hydrological model HBV (Hydrologiska Byrans Vattenbalansavdelning) against daily Q observations with P from each of the different datasets. For the 1058 sparsely gauged catchments, representative of 83.9% of the global land surface (excluding Antarctica), MSWEP obtained a median calibration NSE of 0.52 vs. 0.29-0.39 for the other P datasets. MSWEP is available via http://www.gloh2o.org
Summertime evaluation of REFAME over the Unites States for near real-time high resolution precipitation estimation
Precipitation is the key input for hydrometeorological modeling and applications. In many regions of the world, including populated areas, ground-based measurement of precipitation (whether from radar or rain gauge) is either sparse in time and space or nonexistent. Therefore, high-resolution satellite-based precipitation products are recognized as critical data sources, especially for rapidly-evolving hydrometeorological events such as flash floods which primarily occur during summer/warm seasons. As " proof of concept" , a recently proposed algorithm called Rain Estimation using Forward Adjusted-advection of Microwave Estimates (REFAME) and its variation REFAMEgeo are evaluated over the contiguous United States during summers of 2009 and 2011. Both methods are originally designed for near real-time high resolution precipitation estimation from remotely sensed data. High-resolution Q2 (ground radar) precipitation data, in conjunction with two operational near real-time satellite-based precipitation products (PERSIANN, PERSIANN-CCS) are used as evaluation reference and for comparison. The study is performed at half-hour temporal resolution and at a range of spatial resolutions (0.08-, 0.25-, 0.5-, and 1-degree latitude/longitude). The statistical analyses suggest that REFAMEgeo performs favorably among the studied products in terms of capturing both spatial coverage and intensity of precipitation at near real-time with the temporal resolution offered by geostationary satellites. With respect to volume precipitation, REFAMEgeo together with REFAME demonstrates slight overestimation of intense precipitation and underestimation of light precipitation events. Compared to REFAME, It is observed that REFAMEgeo maintains stable performance, even when the amount of accessible microwave (MW) overpasses is limited. Based on the encouraging outcome of this study which was intended as " proof of concept" , further testing for other seasons and data-rich regions is the next logical step. Upon confirmation of the relative reliability of the algorithm, it is reasonable to recommend the use of its precipitation estimates for data-sparse regions of the world. © 2012 Elsevier B.V
Les biais systématiques des indicateurs globaux de précipitations en zones arides et montagneuses: un essai d'analyse régionale.
International audienceSatellite observation system of rain events is quickly expanding with the new microwave sensors. And several global rainfall products are broadcasted on the Web. This paper focuses on two products: the GSMAP- MVK+ and the GPCP-1DD. It performs a bias regional analysis and relates the estimation errors to the algorithm design. The main results is, whereas the most advanced microwave estimator performs better for local scale rainfall retrieval, the orographic phenomena are deeply underestimated. This conclusion raises the issue of adapting the downscaling method in front of significant orographic effects
Inter-comparison of high-resolution satellite precipitation products over Central Asia
This paper examines the spatial error structures of eight precipitation estimates derived from four different satellite retrieval algorithms including TRMM Multi-satellite Precipitation Analysis (TMPA), Climate Prediction Center morphing technique (CMORPH), Global Satellite Mapping of Precipitation (GSMaP) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). All the original satellite and bias-corrected products of each algorithm (3B42RTV7 and 3B42V7, CMORPH_RAW and CMORPH_CRT, GSMaP_MVK and GSMaP_Gauge, PERSIANN_RAW and PERSIANN_CDR) are evaluated against ground-based Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) over Central Asia for the period of 2004 to 2006. The analyses show that all products except PERSIANN exhibit overestimation over Aral Sea and its surrounding areas. The bias-correction improves the quality of the original satellite TMPA products and GSMaP significantly but slightly in CMORPH and PERSIANN over Central Asia. 3B42RTV7 overestimates precipitation significantly with large Relative Bias (RB) (128.17%) while GSMaP_Gauge shows consistent high correlation coefficient (CC) (>0.8) but RB fluctuates between -57.95% and 112.63%. The PERSIANN_CDR outperforms other products in winter with the highest CC (0.67). Both the satellite-only and gauge adjusted products have particularly poor performance in detecting rainfall events in terms of lower POD (less than 65%), CSI (less than 45%) and relatively high FAR (more than 35%)
Comprehensive evaluation of high-resolution satellite-based precipitation products over China
Characterizing the errors in satellite-based precipitation estimation products is crucial for understanding their effects in hydrological applications. Six precipitation products derived from three algorithms are comprehensively evaluated against gauge data over mainland China from December 2006 to November 2010. These products include three satellite-only estimates: the Global Satellite Mapping of Precipitation Microwave-IR Combined Product (GSMaP_MVK), the Climate Prediction Center (CPC) MORPHing (CMORPH), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), as well as their gauge-corrected counterparts: the GSMaP Gauge-calibrated Product (GSMaP_Gauge), bias-corrected CMORPH (CMORPH_CRT), and PERSIANN Climate Data Record (PERSIANN-CDR). Overall, the bias-correction procedures largely reduce various errors for the three groups of satellite-based precipitation products. GSMaP_Gauge produces better fractional coverage with the highest correlation (0.95) and the lowest RMSE (0.53 mm/day) but also high RB (15.77%). In general, CMORPH_CRT amounts are closer to the gauge reference. CMORPH shows better performance than GSMaP_MVK and PERSIANN with the highest CC (0.82) and the lowest RMSE (0.93 mm/day), but also presents a relatively high RB (-19.60%). In winter, all six satellite precipitation estimates have comparatively poor capability, with the IR-based PERSIANN_CDR exhibiting the closest performance to the gauge reference. Both satellite-only and gauge-corrected satellite products show poor capability in detecting occurrence of precipitation with a low POD (40%)
LMODEL: A satellite precipitation methodology using cloud development modeling. Part I: Algorithm construction and calibration
The Lagrangian Model (LMODEL) is a new multisensor satellite rainfall monitoring methodology based on the use of a conceptual cloud-development model that is driven by geostationary satellite imagery and is locally updated using microwave-based rainfall measurements from low earth-orbiting platforms. This paper describes the cloud development model and updating procedures; the companion paper presents model validation results. The model uses single-band thermal infrared geostationary satellite imagery to characterize cloud motion, growth, and dispersal at high spatial resolution (similar to 4 km). These inputs drive a simple, linear, semi-Lagrangian, conceptual cloud mass balance model, incorporating separate representations of convective and stratiform processes. The model is locally updated against microwave satellite data using a two-stage process that scales precipitable water fluxes into the model and then updates model states using a Kalman filter. Model calibration and updating employ an empirical rainfall collocation methodology designed to compensate for the effects of measurement time difference, geolocation error, cloud parallax, and rainfall shear
A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons
In this paper, we present a comprehensive review of the data sources and estimation methods of 30 currently available global precipitation data sets, including gauge-based, satellite-related, and reanalysis data sets. We analyzed the discrepancies between the data sets from daily to annual timescales and found large differences in both the magnitude and the variability of precipitation estimates. The magnitude of annual precipitation estimates over global land deviated by as much as 300 mm/yr among the products. Reanalysis data sets had a larger degree of variability than the other types of data sets. The degree of variability in precipitation estimates also varied by region. Large differences in annual and seasonal estimates were found in tropical oceans, complex mountain areas, northern Africa, and some high-latitude regions. Overall, the variability associated with extreme precipitation estimates was slightly greater at lower latitudes than at higher latitudes. The reliability of precipitation data sets is mainly limited by the number and spatial coverage of surface stations, the satellite algorithms, and the data assimilation models. The inconsistencies described limit the capability of the products for climate monitoring, attribution, and model validation
VERIFICATION OF HOURLY GSMAP RAINFALL ESTIMATES DURING THE FLOOD EVENTS IN KUMAMOTO PREFECTURE, JAPAN
Japan and other countries have been greatly damaged by floods in the past due to heavy rainfall. Flood forecasting using rainfall data observed by satellite is a welcome development. GSMaP (Global Satellite Mapping Precipitation) data can present the amounts of rainfall with high temporal resolution. For that reason, it is important to measure the accuracy of hourly GSMaP data. Kumamoto Prefecture was chosen as the research location in this study. The aim of this research was to verify hourly GSMaP data in two type file (i.e., GSMaP_MVK and GSMaP_NRT) with rain gauge data and to define the rainfall pattern which causes flood. Verification of hourly rainfall data showed that GSMaP_MVK was reasonably good at detecting precipitation events and GSMaP_NRT was inadequate to represent the rainfall data. Two rainfall patterns were observed over Kumamoto Prefecture before the occurrence of the flood
- …
