1,142,521 research outputs found
Stomatal behavior of cowpea genotypes grown under varying moisture levels
Drought is a major limitation to crop productivity worldwide. Plants lose most of their water through stomata, thus making stomata an important organ in the control of transpiration and photosynthesis. This study assessed the stomatal behavior of four cowpea genotypes grown under four moisture levels under hot semi-arid conditions. Stomatal conductance (gs) was measured at 47, 54, 70 and 77 days after planting (DAP). Biomass and carbon isotope composition (C-13) were also determined at flowering. Genotype and moisture level significantly influenced gs. Genotypes varied in gs at vegetative stages (47 and 54 DAP) only. TVu4607 had higher gs under severe drought conditions at both 47 and 54 DAP. On the other hand, moisture level influenced gs at 54 and 70 DAP only. Stomatal conductance was severely restricted in cowpea under both moderate and severe drought conditions as gs was mostly below the threshold 0.10 mol m(-2) s(-1). Relationships between: biomass and gs, and C-13 and gs were positive under severe drought only. The findings revealed that cowpea genotypes vary in gs under dry conditions and that the variation is more prominent at vegetative stage, suggesting that cowpea productivity in dry areas could be improved through selection of genotypes that maintain higher gs under dry conditions
The Distinctive Regulation of Cyanobacterial Glutamine Synthetase
Glutamine synthetase (GS) features prominently in bacterial nitrogen assimilation as it catalyzes the entry of bioavailable nitrogen in form of ammonium into cellular metabolism. The classic example, the comprehensively characterized GS of enterobacteria, is subject to exquisite regulation at multiple levels, among them gene expression regulation to control GS abundance, as well as feedback inhibition and covalent modifications to control enzyme activity. Intriguingly, the GS of the ecologically important clade of cyanobacteria features fundamentally different regulatory systems to those of most prokaryotes. These include the interaction with small proteins, the so-called inactivating factors (IFs) that inhibit GS linearly with their abundance. In addition to this protein interaction-based regulation of GS activity, cyanobacteria use alternative elements to control the synthesis of GS and IFs at the transcriptional level. Moreover, cyanobacteria evolved unique RNA-based regulatory mechanisms such as glutamine riboswitches to tightly tune IF abundance. In this review, we aim to outline the current knowledge on the distinctive features of the cyanobacterial GS encompassing the overall control of its activity, sensing the nitrogen status, transcriptional and post-transcriptional regulation, as well as strain-specific differences.Deutsche Forschungsgemeinschaft KL 3114/2-1Ministerio de Economía y Competitividad BIO2016-75634-PFEDER BIO2016-75634-
Chemical Self Assembly of Graphene Sheets
Chemically derived graphene sheets were found to self-assemble onto patterned
gold structures via electrostatic interactions between noncovalent functional
groups on GS and gold. This afforded regular arrays of single graphene sheets
on large substrates, characterized by scanning electron and Auger microscopy
imaging and Raman spectroscopy. Self assembly was used for the first time to
produce on-substrate and fully-suspended graphene electrical devices. Molecular
coatings on the GS were removed by high current electrical annealing, which
recovered the high electrical conductance and Dirac point of the GS. Molecular
sensors for highly sensitive gas detections are demonstrated with
self-assembled GS devices.Comment: Nano Research, in press, http://www.thenanoresearch.co
Ozone Oxidizes Glutathione to a Sulfonic Acid
Biosurfaces are universally covered with fluid microfilms containing reduced glutathione (GSH) and other antioxidants whose putative roles include the detoxification of ambient ozone (O_3). It is generally believed that O_3 accepts an electron from the thiolate GS^(2-) function [pK_a(GS^-) = 8.8] of GSH to produce thiyl GS^(•-) radicals en route to the disulfide GSSG. Here, we report novel electrospray mass spectrometry experiments showing that sulfonates (GSO_3^-/GSO_3^(2-)), not GSSG, are the exclusive final products on the surface of aqueous GSH microdroplets exposed to dilute O_3(g) for ~1 ms. The higher reactivity of the thiolate GS^(2-) toward O_3(g) over the thiol GS^- is kinetically resolved in this time frame due to slow GS^- acid dissociation. However, our experiments also show that O_3 will be largely scavenged by the more reactive ascorbate coantioxidant in typical interfacial biofilms. The presence of GSSG and the absence of GSO_3^-/GSO_3^(2-) in extracellular lining fluids are therefore evidence of GSH oxidation by species other than O_3
Combined electrical transport and capacitance spectroscopy of a field effect transistor
We have measured both the current-voltage (-)
and capacitance-voltage (-) characteristics of a
field effect transistor. From the measured capacitance
we calculate the electron surface density and show that its gate voltage
dependence follows the theoretical prediction resulting from the
two-dimensional free electron model. This model allows us to fit the measured
- characteristics over the \emph{entire range} of
. Combining this experimental result with the measured
current-voltage characteristics, we determine the field effect mobility as a
function of gate voltage. We show that for our device this improved combined
approach yields significantly smaller values (more than a factor of 4) of the
electron mobility than the conventional analysis of the current-voltage
characteristics only.Comment: to appear in Applied Physics Letter
Leaf-Atmosphere NH3 Exchange in Barley Mutants with Reduced Activities of Glutamine Synthetase
Mutants of barley (Hordeum vulgare L. cv Maris Mink) with 47 or 66% of the glutamine synthetase (GS) activity of the wild type were used for studies of NH3 exchange with the atmosphere. Under normal light and temperature conditions, tissue NH4+ concentrations were higher in the two mutants compared with wild-type plants, and this was accompanied by higher NH3 emission from the leaves. The emission of NH3 increased with increasing leaf temperatures in both wild-type and mutant plants, but the increase was much more pronounced in the mutants. Similar results were found when the light intensity (photosynthetic photon flux density) was increased. Compensation points for NH3 were estimated by exposing intact shoots to 10 nmol NH3 mol-1 air under conditions with increasing temperatures until the plants started to emit NH3. Referenced to 25[deg]C, the compensation points were 5.0 nmol mol-1 for wild-type plants, 8.3 nmol mol-1 for 47% GS mutants, and 11.8 nmol mol-1 for 66% GS mutants. Compensation points for NH3 in single, nonsenescent leaves were estimated on the basis of apoplastic pH and NH4+ concentrations. These values were 0.75, 3.46, and 7.72 nmol mol-1 for wild type, 47% GS mutants, and 66% GS mutants, respectively. The 66% GS mutant always showed higher tissue NH4+ concentrations, NH3 emission rates, and NH3 compensation points compared with the 47% GS mutant, indicating that NH4+ release was curtailed by some kind of compensatory mechanism in plants with only 47% GS activit
Liberal And General Studies In Further Education: Voices From The ‘Chalk Face’
This paper presents initial findings from research investigating an important but largely neglected facet of the history of Further Education (FE) – the Liberal Studies and General Studies (LS/GS) movement. Drawing on historical documents and interview data from a group of former LS/GS lecturers, the paper provides important insights into some of the key events and initiatives between the 1950s-1980s, which led to the rise and eventual fall of the LS/GS movement, and seeks to capture the voices of those who were involved at the ‘chalk face’. Whilst it is acknowledged that the quality and nature of LS/GS was often variable and that the experiences of both teachers and learners were often uneven, the central argument of the paper is that many of the principles of the LS/GS movement were not only ahead of their time, but are perhaps more relevant to FE today than ever before
- …
