231,310 research outputs found
Multi-modal gated recurrent units for image description
Using a natural language sentence to describe the content of an image is a
challenging but very important task. It is challenging because a description
must not only capture objects contained in the image and the relationships
among them, but also be relevant and grammatically correct. In this paper a
multi-modal embedding model based on gated recurrent units (GRU) which can
generate variable-length description for a given image. In the training step,
we apply the convolutional neural network (CNN) to extract the image feature.
Then the feature is imported into the multi-modal GRU as well as the
corresponding sentence representations. The multi-modal GRU learns the
inter-modal relations between image and sentence. And in the testing step, when
an image is imported to our multi-modal GRU model, a sentence which describes
the image content is generated. The experimental results demonstrate that our
multi-modal GRU model obtains the state-of-the-art performance on Flickr8K,
Flickr30K and MS COCO datasets.Comment: 25 pages, 7 figures, 6 tables, magazin
Automated Audio Captioning with Recurrent Neural Networks
We present the first approach to automated audio captioning. We employ an
encoder-decoder scheme with an alignment model in between. The input to the
encoder is a sequence of log mel-band energies calculated from an audio file,
while the output is a sequence of words, i.e. a caption. The encoder is a
multi-layered, bi-directional gated recurrent unit (GRU) and the decoder a
multi-layered GRU with a classification layer connected to the last GRU of the
decoder. The classification layer and the alignment model are fully connected
layers with shared weights between timesteps. The proposed method is evaluated
using data drawn from a commercial sound effects library, ProSound Effects. The
resulting captions were rated through metrics utilized in machine translation
and image captioning fields. Results from metrics show that the proposed method
can predict words appearing in the original caption, but not always correctly
ordered.Comment: Presented at the 11th IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), 201
- …
