1,710,532 research outputs found
Defective and Clustered Graph Colouring
Consider the following two ways to colour the vertices of a graph where the
requirement that adjacent vertices get distinct colours is relaxed. A colouring
has "defect" if each monochromatic component has maximum degree at most
. A colouring has "clustering" if each monochromatic component has at
most vertices. This paper surveys research on these types of colourings,
where the first priority is to minimise the number of colours, with small
defect or small clustering as a secondary goal. List colouring variants are
also considered. The following graph classes are studied: outerplanar graphs,
planar graphs, graphs embeddable in surfaces, graphs with given maximum degree,
graphs with given maximum average degree, graphs excluding a given subgraph,
graphs with linear crossing number, linklessly or knotlessly embeddable graphs,
graphs with given Colin de Verdi\`ere parameter, graphs with given
circumference, graphs excluding a fixed graph as an immersion, graphs with
given thickness, graphs with given stack- or queue-number, graphs excluding
as a minor, graphs excluding as a minor, and graphs excluding
an arbitrary graph as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in
the Electronic Journal of Combinatoric
Random graphs from a weighted minor-closed class
There has been much recent interest in random graphs sampled uniformly from
the n-vertex graphs in a suitable minor-closed class, such as the class of all
planar graphs. Here we use combinatorial and probabilistic methods to
investigate a more general model. We consider random graphs from a
`well-behaved' class of graphs: examples of such classes include all
minor-closed classes of graphs with 2-connected excluded minors (such as
forests, series-parallel graphs and planar graphs), the class of graphs
embeddable on any given surface, and the class of graphs with at most k
vertex-disjoint cycles. Also, we give weights to edges and components to
specify probabilities, so that our random graphs correspond to the random
cluster model, appropriately conditioned.
We find that earlier results extend naturally in both directions, to general
well-behaved classes of graphs, and to the weighted framework, for example
results concerning the probability of a random graph being connected; and we
also give results on the 2-core which are new even for the uniform (unweighted)
case.Comment: 46 page
On edge-group choosability of graphs
In this paper, we study the concept of edge-group choosability of graphs. We
say that G is edge k-group choosable if its line graph is k-group choosable. An
edge-group choosability version of Vizing conjecture is given. The evidence of
our claim are graphs with maximum degree less than 4, planar graphs with
maximum degree at least 11, planar graphs without small cycles, outerplanar
graphs and near-outerplanar graphs
- …
