1,640 research outputs found

    GPU acceleration of predictive partitioned vector quantization for ultraspectral sounder data compression

    Get PDF
    [[abstract]]For the large-volume ultraspectral sounder data, compression is desirable to save storage space and transmission time. To retrieve the geophysical paramters without losing precision the ultraspectral sounder data compression has to be lossless. Recently there is a boom on the use of graphic processor units (GPU) for speedup of scientific computations. By identifying the time dominant portions of the code that can be executed in parallel, significant speedup can be achieved by using GPU. Predictive partitioned vector quantization (PPVQ) has been proven to be an effective lossless compression scheme for ultraspectral sounder data. It consists of linear prediction, bit depth partitioning, vector quantization, and entropy coding. Two most time consuming stages of linear prediction and vector quantization are chosen for GPU-based implementation. By exploiting the data parallel characteristics of these two stages, a spatial division design shows a speedup of 72x in our four-GPU-based implementation of the PPVQ compression scheme.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]SCI[[booktype]]紙本[[countrycodes]]US

    Fast Compressed Segmentation Volumes for Scientific Visualization

    Full text link
    Voxel-based segmentation volumes often store a large number of labels and voxels, and the resulting amount of data can make storage, transfer, and interactive visualization difficult. We present a lossless compression technique which addresses these challenges. It processes individual small bricks of a segmentation volume and compactly encodes the labelled regions and their boundaries by an iterative refinement scheme. The result for each brick is a list of labels, and a sequence of operations to reconstruct the brick which is further compressed using rANS-entropy coding. As the relative frequencies of operations are very similar across bricks, the entropy coding can use global frequency tables for an entire data set which enables efficient and effective parallel (de)compression. Our technique achieves high throughput (up to gigabytes per second both for compression and decompression) and strong compression ratios of about 1% to 3% of the original data set size while being applicable to GPU-based rendering. We evaluate our method for various data sets from different fields and demonstrate GPU-based volume visualization with on-the-fly decompression, level-of-detail rendering (with optional on-demand streaming of detail coefficients to the GPU), and a caching strategy for decompressed bricks for further performance improvement.Comment: IEEE Vis 202

    Data Compression in the Petascale Astronomy Era: a GERLUMPH case study

    Full text link
    As the volume of data grows, astronomers are increasingly faced with choices on what data to keep -- and what to throw away. Recent work evaluating the JPEG2000 (ISO/IEC 15444) standards as a future data format standard in astronomy has shown promising results on observational data. However, there is still a need to evaluate its potential on other type of astronomical data, such as from numerical simulations. GERLUMPH (the GPU-Enabled High Resolution cosmological MicroLensing parameter survey) represents an example of a data intensive project in theoretical astrophysics. In the next phase of processing, the ~27 terabyte GERLUMPH dataset is set to grow by a factor of 100 -- well beyond the current storage capabilities of the supercomputing facility on which it resides. In order to minimise bandwidth usage, file transfer time, and storage space, this work evaluates several data compression techniques. Specifically, we investigate off-the-shelf and custom lossless compression algorithms as well as the lossy JPEG2000 compression format. Results of lossless compression algorithms on GERLUMPH data products show small compression ratios (1.35:1 to 4.69:1 of input file size) varying with the nature of the input data. Our results suggest that JPEG2000 could be suitable for other numerical datasets stored as gridded data or volumetric data. When approaching lossy data compression, one should keep in mind the intended purposes of the data to be compressed, and evaluate the effect of the loss on future analysis. In our case study, lossy compression and a high compression ratio do not significantly compromise the intended use of the data for constraining quasar source profiles from cosmological microlensing.Comment: 15 pages, 9 figures, 5 tables. Published in the Special Issue of Astronomy & Computing on The future of astronomical data format
    corecore