3 research outputs found

    Concurrent software architectures for exploratory data analysis

    Get PDF
    Decades ago, increased volume of data made manual analysis obsolete and prompted the use of computational tools with interactive user interfaces and rich palette of data visualizations. Yet their classic, desktop-based architectures can no longer cope with the ever-growing size and complexity of data. Next-generation systems for explorative data analysis will be developed on client–server architectures, which already run concurrent software for data analytics but are not tailored to for an engaged, interactive analysis of data and models. In explorative data analysis, the key is the responsiveness of the system and prompt construction of interactive visualizations that can guide the users to uncover interesting data patterns. In this study, we review the current software architectures for distributed data analysis and propose a list of features to be included in the next generation frameworks for exploratory data analysis. The new generation of tools for explorative data analysis will need to address integrated data storage and processing, fast prototyping of data analysis pipelines supported by machine-proposed analysis workflows, preemptive analysis of data, interactivity, and user interfaces for intelligent data visualizations. The systems will rely on a mixture of concurrent software architectures to meet the challenge of seamless integration of explorative data interfaces at client site with management of concurrent data mining procedures on the servers

    GPU-accelerated machine learning techniques enable QSAR modeling of large HTS data

    No full text
    Abstract—Quantitative structure activity relationship (QSAR) modeling using high-throughput screening (HTS) data is a powerful technique which enables the construction of predictive models. These models are utilized for the in silico screening of libraries of molecules for which experimental screening methods are both cost- and time-expensive. Machine learning techniques excel in QSAR modeling where the relationship between structure and activity is often complex and non-linear. As these HTS data sets continue to increase in number of compounds screened, extensive feature selection and cross validation becomes computationally expensive. Leveraging massively parallel architectures such as graphics processing units (GPUs) to accelerate the training algorithms for these machine learning techniques is a cost-efficient manner in which to combat this problem. In this work, several machine learning techniques are ported in OpenCL for GPU-acceleration to enable construction of QSAR ensemble models using HTS data. We report computational performance numbers using several HTS data sets freely available from PubChem database. We also report results of a case study using HTS data for a target of pharmacological and pharmaceutical relevance, cytochrome P450 3A4, for which an enrichment of 94 % of the theoretical maximum is achieved
    corecore