8 research outputs found

    Love Thy Neighbors: Image Annotation by Exploiting Image Metadata

    Get PDF
    Some images that are difficult to recognize on their own may become more clear in the context of a neighborhood of related images with similar social-network metadata. We build on this intuition to improve multilabel image annotation. Our model uses image metadata nonparametrically to generate neighborhoods of related images using Jaccard similarities, then uses a deep neural network to blend visual information from the image and its neighbors. Prior work typically models image metadata parametrically, in contrast, our nonparametric treatment allows our model to perform well even when the vocabulary of metadata changes between training and testing. We perform comprehensive experiments on the NUS-WIDE dataset, where we show that our model outperforms state-of-the-art methods for multilabel image annotation even when our model is forced to generalize to new types of metadata.Comment: Accepted to ICCV 201

    Love Thy Neighbors: Image Annotation by Exploiting Image Metadata

    Get PDF

    Learning Adaptive Representations for Image Retrieval and Recognition

    Get PDF
    Content-based image retrieval is a core problem in computer vision. It has a wide range of application such as object and place recognition, digital library search, organizing image collections, and 3D reconstruction. However, robust and accurate image retrieval from a large-scale image collection still remains an open problem. For particular instance retrieval, challenges come not only from photometric and geometric changes between the query and the database images, but also from severe visual overlap with irrelevant images. On the other hand, large intra-class variation and inter-class similarity between semantic categories represents a major obstacle in semantic image retrieval and recognition. This dissertation explores learning image representations that adaptively focus on specific image content to tackle these challenges. For this purpose, three kinds of image contexts for discriminating relevant and irrelevant image content are exploited: (1) local image context, (2) semi-global image context, and (3) global image context. Novel models for learning adaptive image representations based on each context are introduced. Moreover, as a byproduct of training the proposed models, the underlying task-relevant contexts are automatically revealed from the data in a self-supervised manner. These include data-driven notion of good local mid-level features, task-relevant semi-global contexts with rich high-level information, and the hierarchy of images. Experimental evaluation illustrates the superiority of the proposed methods in the applications of place recognition, scene categorization, and particular object retrieval.Doctor of Philosoph

    Toward Efficient and Robust Large-Scale Structure-from-Motion Systems

    Get PDF
    The ever-increasing number of images that are uploaded and shared on the Internet has recently been leveraged by computer vision researchers to extract 3D information about the content seen in these images. One key mechanism to extract this information is structure-from-motion, which is the process of recovering the 3D geometry (structure) of a scene via a set of images from different viewpoints (camera motion). However, when dealing with crowdsourced datasets comprised of tens or hundreds of millions of images, the magnitude and diversity of the imagery poses challenges such as robustness, scalability, completeness, and correctness for existing structure-from-motion systems. This dissertation focuses on these challenges and demonstrates practical methods to address the problems of data association and verification within structure-from-motion systems. Data association within structure-from-motion systems consists of the discovery of pairwise image overlap within the input dataset. In order to perform this discovery, previous systems assumed that information about every image in the input dataset could be stored in memory, which is prohibitive for large-scale photo collections. To address this issue, we propose a novel streaming-based framework for the discovery of related sets of images, and demonstrate our approach on a crowdsourced dataset containing 100 million images from all around the world. Results illustrate that our streaming-based approach does not compromise model completeness, but achieves unprecedented levels of efficiency and scalability. The verification of individual data associations is difficult to perform during the process of structure-from-motion, as standard methods have limited scope when determining image overlap. Therefore, it is possible for erroneous associations to form, especially when there are symmetric, repetitive, or duplicate structures which can be incorrectly associated with each other. The consequences of these errors are incorrectly placed cameras and scene geometry within the 3D reconstruction. We present two methods that can detect these local inconsistencies and successfully resolve them into a globally consistent 3D model. In our evaluation, we show that our techniques are efficient, are robust to a variety of scenes, and outperform existing approaches.Doctor of Philosoph

    Visual Geo-Localization and Location-Aware Image Understanding

    Get PDF
    Geo-localization is the problem of discovering the location where an image or video was captured. Recently, large scale geo-localization methods which are devised for ground-level imagery and employ techniques similar to image matching have attracted much interest. In these methods, given a reference dataset composed of geo-tagged images, the problem is to estimate the geo-location of a query by finding its matching reference images. In this dissertation, we address three questions central to geo-spatial analysis of ground-level imagery: 1) How to geo-localize images and videos captured at unknown locations? 2) How to refine the geo-location of already geo-tagged data? 3) How to utilize the extracted geo-tags? We present a new framework for geo-locating an image utilizing a novel multiple nearest neighbor feature matching method using Generalized Minimum Clique Graphs (GMCP). First, we extract local features (e.g., SIFT) from the query image and retrieve a number of nearest neighbors for each query feature from the reference data set. Next, we apply our GMCP-based feature matching to select a single nearest neighbor for each query feature such that all matches are globally consistent. Our approach to feature matching is based on the proposition that the first nearest neighbors are not necessarily the best choices for finding correspondences in image matching. Therefore, the proposed method considers multiple reference nearest neighbors as potential matches and selects the correct ones by enforcing the consistency among their global features (e.g., GIST) using GMCP. Our evaluations using a new data set of 102k Street View images shows the proposed method outperforms the state-of-the-art by 10 percent. Geo-localization of images can be extended to geo-localization of a video. We have developed a novel method for estimating the geo-spatial trajectory of a moving camera with unknown intrinsic parameters in a city-scale. The proposed method is based on a three step process: 1) individual geo-localization of video frames using Street View images to obtain the likelihood of the location (latitude and longitude) given the current observation, 2) Bayesian tracking to estimate the frame location and video\u27s temporal evolution using previous state probabilities and current likelihood, and 3) applying a novel Minimum Spanning Trees based trajectory reconstruction to eliminate trajectory loops or noisy estimations. Thus far, we have assumed reliable geo-tags for reference imagery are available through crowdsourcing. However, crowdsourced images are well known to suffer from the acute shortcoming of having inaccurate geo-tags. We have developed the first method for refinement of GPS-tags which automatically discovers the subset of corrupted geo-tags and refines them. We employ Random Walks to discover the uncontaminated subset of location estimations and robustify Random Walks with a novel adaptive damping factor that conforms to the level of noise in the input. In location-aware image understanding, we are interested in improving the image analysis by putting it in the right geo-spatial context. This approach is of particular importance as the majority of cameras and mobile devices are now being equipped with GPS chips. Therefore, developing techniques which can leverage the geo-tags of images for improving the performance of traditional computer vision tasks is of particular interest. We have developed a location-aware multimodal approach which incorporates business directories, textual information, and web images to identify businesses in a geo-tagged query image
    corecore