3,415 research outputs found

    On the Complexity of the Mis\`ere Version of Three Games Played on Graphs

    Full text link
    We investigate the complexity of finding a winning strategy for the mis\`ere version of three games played on graphs : two variants of the game NimG\text{NimG}, introduced by Stockmann in 2004 and the game Vertex Geography\text{Vertex Geography} on both directed and undirected graphs. We show that on general graphs those three games are PSPACE\text{PSPACE}-Hard or Complete. For one PSPACE\text{PSPACE}-Hard variant of NimG\text{NimG}, we find an algorithm to compute an effective winning strategy in time O(∣V(G)∣.∣E(G)∣)\mathcal{O}(\sqrt{|V(G)|}.|E(G)|) when GG is a bipartite graph

    Push-Pull Block Puzzles are Hard

    Full text link
    This paper proves that push-pull block puzzles in 3D are PSPACE-complete to solve, and push-pull block puzzles in 2D with thin walls are NP-hard to solve, settling an open question by Zubaran and Ritt. Push-pull block puzzles are a type of recreational motion planning problem, similar to Sokoban, that involve moving a `robot' on a square grid with 1×11 \times 1 obstacles. The obstacles cannot be traversed by the robot, but some can be pushed and pulled by the robot into adjacent squares. Thin walls prevent movement between two adjacent squares. This work follows in a long line of algorithms and complexity work on similar problems. The 2D push-pull block puzzle shows up in the video games Pukoban as well as The Legend of Zelda: A Link to the Past, giving another proof of hardness for the latter. This variant of block-pushing puzzles is of particular interest because of its connections to reversibility, since any action (e.g., push or pull) can be inverted by another valid action (e.g., pull or push).Comment: Full version of CIAC 2017 paper. 17 page

    The Computational Complexity of Angry Birds

    Full text link
    The physics-based simulation game Angry Birds has been heavily researched by the AI community over the past five years, and has been the subject of a popular AI competition that is currently held annually as part of a leading AI conference. Developing intelligent agents that can play this game effectively has been an incredibly complex and challenging problem for traditional AI techniques to solve, even though the game is simple enough that any human player could learn and master it within a short time. In this paper we analyse how hard the problem really is, presenting several proofs for the computational complexity of Angry Birds. By using a combination of several gadgets within this game's environment, we are able to demonstrate that the decision problem of solving general levels for different versions of Angry Birds is either NP-hard, PSPACE-hard, PSPACE-complete or EXPTIME-hard. Proof of NP-hardness is by reduction from 3-SAT, whilst proof of PSPACE-hardness is by reduction from True Quantified Boolean Formula (TQBF). Proof of EXPTIME-hardness is by reduction from G2, a known EXPTIME-complete problem similar to that used for many previous games such as Chess, Go and Checkers. To the best of our knowledge, this is the first time that a single-player game has been proven EXPTIME-hard. This is achieved by using stochastic game engine dynamics to effectively model the real world, or in our case the physics simulator, as the opponent against which we are playing. These proofs can also be extended to other physics-based games with similar mechanics.Comment: 55 Pages, 39 Figure

    Trains, Games, and Complexity: 0/1/2-Player Motion Planning through Input/Output Gadgets

    Full text link
    We analyze the computational complexity of motion planning through local "input/output" gadgets with separate entrances and exits, and a subset of allowed traversals from entrances to exits, each of which changes the state of the gadget and thereby the allowed traversals. We study such gadgets in the 0-, 1-, and 2-player settings, in particular extending past motion-planning-through-gadgets work to 0-player games for the first time, by considering "branchless" connections between gadgets that route every gadget's exit to a unique gadget's entrance. Our complexity results include containment in L, NL, P, NP, and PSPACE; as well as hardness for NL, P, NP, and PSPACE. We apply these results to show PSPACE-completeness for certain mechanics in Factorio, [the Sequence], and a restricted version of Trainyard, improving prior results. This work strengthens prior results on switching graphs and reachability switching games.Comment: 37 pages, 36 figure

    Branching-time model checking of one-counter processes

    Full text link
    One-counter processes (OCPs) are pushdown processes which operate only on a unary stack alphabet. We study the computational complexity of model checking computation tree logic (CTL) over OCPs. A PSPACE upper bound is inherited from the modal mu-calculus for this problem. First, we analyze the periodic behaviour of CTL over OCPs and derive a model checking algorithm whose running time is exponential only in the number of control locations and a syntactic notion of the formula that we call leftward until depth. Thus, model checking fixed OCPs against CTL formulas with a fixed leftward until depth is in P. This generalizes a result of the first author, Mayr, and To for the expression complexity of CTL's fragment EF. Second, we prove that already over some fixed OCP, CTL model checking is PSPACE-hard. Third, we show that there already exists a fixed CTL formula for which model checking of OCPs is PSPACE-hard. To obtain the latter result, we employ two results from complexity theory: (i) Converting a natural number in Chinese remainder presentation into binary presentation is in logspace-uniform NC^1 and (ii) PSPACE is AC^0-serializable. We demonstrate that our approach can be used to obtain further results. We show that model-checking CTL's fragment EF over OCPs is hard for P^NP, thus establishing a matching lower bound and answering an open question of the first author, Mayr, and To. We moreover show that the following problem is hard for PSPACE: Given a one-counter Markov decision process, a set of target states with counter value zero each, and an initial state, to decide whether the probability that the initial state will eventually reach one of the target states is arbitrarily close to 1. This improves a previously known lower bound for every level of the Boolean hierarchy by Brazdil et al
    • …
    corecore