1,936 research outputs found

    Aligned Graphene Nanoribbons and Crossbars from Unzipped Carbon Nanotubes

    Get PDF
    Aligned graphene nanoribbon (GNR) arrays were made by unzipping of aligned single-walled and few-walled carbon nanotube (CNT) arrays. Nanotube unzipping was achieved by a polymer-protected Ar plasma etching method, and the resulting nanoribbon array was transferred onto any substrates. Atomic force microscope (AFM) imaging and Raman mapping on the same CNTs before and after unzipping confirmed that ~80% of CNTs were opened up to form single layer sub-10 nm GNRs. Electrical devices made from the GNRs (after annealing in H2 at high temperature) showed on/off current (Ion/Ioff) ratios up to 103 at room temperature, suggesting semiconducting nature of the narrow GNRs. Novel GNR-GNR and GNR-CNT crossbars were fabricated by transferring GNR arrays across GNR and CNT arrays, respectively. The production of ordered graphene nanoribbon architectures may allow for large scale integration of GNRs into nanoelectronics or optoelectronics.Comment: published in Nano Researc

    Magnetoplasmons in quasi-neutral epitaxial graphene nanoribbons

    Full text link
    We present infrared transmission spectroscopy study of the inter-Landau-level excitations in quasi-neutral epitaxial graphene nanoribbon arrays. We observed a substantial deviation in energy of the L0(−1)L_{0(-1)}→\toL1(0)L_{1(0)} transition from the characteristic square root magnetic-field dependence of two-dimensional graphene. This deviation arises from the formation of upper-hybrid mode between the Landau level transition and the plasmon resonance. In the quantum regime the hybrid mode exhibits a distinct dispersion relation, markedly different from that expected for conventional two-dimensional systems and highly doped graphene

    Mid-infrared Gas Sensing Using Graphene Plasmons Tuned by Reversible Chemical Doping

    Get PDF
    Highly confined plasmon modes in nanostructured graphene can be used to detect tiny quantities of biological and gas molecules. In biosensing, a specific biomarker can be concentrated close to graphene, where the optical field is enhanced, by using an ad-hoc functional layer (e.g., antibodies). Inspired by this approach, in this paper we exploit the chemical and gas adsorption properties of an ultrathin polymer layer deposited on a nanostructured graphene surface to demonstrate a new gas sensing scheme. A proof-of-concept experiment using polyethylenimine (PEI) that is chemically reactive to CO2 molecules is presented. Upon CO2 adsorption, the sensor optical response changes because of PEI vibrational modes enhancement and shift in plasmon resonance, the latter related to polymer-induced doping of graphene. We show that the change in optical response is reversed during CO2 desorption. The demonstrated limit of detection (LOD) of 390 ppm corresponds to the lowest value detectable in ambient atmosphere, which can be lowered by operating in vacuum. By using specific adsorption polymers, the proposed sensing scheme can be easily extended to other relevant gases, for example, volatile organic compounds.Peer ReviewedPostprint (published version
    • …
    corecore