124 research outputs found

    Integration of seismic, well, potential-field and geological data for ore prospecting in the Iberian Pyrite Belt

    Get PDF
    Ore prospecting using gravimetric and magnetic data has become one of the traditional approaches in the last decades, often complemented with electric and electromagnetic methods. However, due to the problem of non-uniqueness inherent to potential-filed modelling, constrains provided by structural methods such as seismic reflection are often used. During the exploration of massive sulphide polimetallic minerals in the Iberian Pyrite Belt Figueira de Cavaleiros sector, located in the Sado Tertiary Basin, several gravimetric and magnetic anomalies were considered as interesting targets. In order to reduce ambiguity of the gravimetric modelling and to confirm the geological model of the area, two seismic reflection profiles were acquired. The interpretation of these profiles was assisted by three mechanical boreholes, two of them located in the research area, in order to make a seismostratigraphic interpretation. Unfortunately, the gravimetric modelling suggests that the anomaly has a lithological and structural origin and is not related with massive sulphides. Nevertheless, a good agreement between the seismic and potential-field data was achieved and new insights into the geological model for the region were obtained form this work, with accurate data about the Tertiary cover and Palaeozoic basement

    Gravity and Magnetic Investigation of the Surtsey Volcano of Iceland’s Vestmannaeyjar Archipelago

    Get PDF
    This study integrated topography, and anomalous gravity and magnetic data for the crustal attributes of the juvenile Surtsey volcano, which is part of the Vestmannaeyjar archipelago off the southern tip of Iceland on the Atlantic Ridge. Crustal models that jointly satisfy multiple datasets typically are more reliable than one based only on a single set of data. Here, the modeling used Geosoft’s Oasis montage software to access and process the datasets. The modeling suggested that Surtsey’s subsurface architecture is much more extensive than its terrestrial edifice. It also constrained crustal temperature variations that inverse gravity and magnetic anomaly correlations may flag. Enhanced heat depresses crustal magnetization and its magnetic anomaly and increases the related gravity anomaly due to the inflation of the crust and its density contrast relative to the overlying air/sea water environment and vice versa. Geothermal modeling MatLab code also was developed to suggest that Surtsey might achieve thermal equilibrium on the scale of some 105 yrs. These results provide a template for considering the crustal properties of the other volcanoes of the Vestmannaeyjar archipelago that sits on a propagating oceanic ridge.Shell Exploration and Production CompanyNo embarg

    The Mutual Orbit, Mass, and Density of the Large Transneptunian Binary System Varda and Ilmar\"e

    Full text link
    From observations by the Hubble Space Telescope, Keck II Telescope, and Gemini North Telescope, we have determined the mutual orbit of the large transneptunian object (174567) Varda and its satellite Ilmar\"e. These two objects orbit one another in a highly inclined, circular or near-circular orbit with a period of 5.75 days and a semimajor axis of 4810 km. This orbit reveals the system mass to be (2.664 +/- 0.064) x 10^20 kg, slightly greater than the mass of the second most massive main-belt asteroid (4) Vesta. The dynamical mass can in turn be combined with estimates of the surface area of the system from Herschel Space Telescope thermal observations to estimate a bulk density of 1.24 +0.50 -0.35 g cm^-3. Varda and Ilmar\"e both have colors similar to the combined colors of the system, B-V = 0.886 +/- 0.025 and V-I = 1.156 +/- 0.029.Comment: 16 pages, 4 tables, 6 figures, in press in Icaru

    Crustal structure and tectonic setting of the south central Andes from gravimetric analysis

    Get PDF
    En el presente trabajo, a partir de datos gravimétricos terrestres, se preparó una carta de anomalías de Bouguer, la cual fue adecuadamente filtrada a fin de separar efectos gravimétricos someros y profundos. Con base en un modelo de densidad, mediante de técnicas de inversión gravimétrica, se modeló la discontinuidad corteza-manto y el basamento cristalino, respectivamente. De forma posterior, se evaluó el espesor elástico equivalente considerando la información de la discontinuidad de la corteza-manto y la carga topográfica. Se encontraron valores altos de espesor elástico Te, al este de la precordillera Andina y al oeste de la sierra Pampeana de Velasco. Estos resultados son consistentes con los valores positivos de anomalía residual de Bouguer e isotáticos, lo que estaría indicando la presencia de rocas de alta densidad en corteza media a superior. Además, los análisis petrográficos y geoquímicos realizados en afloramientos en superficie indican un origen mantélico.Fil: Weidmann, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; ArgentinaFil: Spagnotto, Silvana Liz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Geología; ArgentinaFil: Gimenez, Mario Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Fisicas y Naturales. Instituto Geofisico Sismologico Volponi; ArgentinaFil: Martinez, Myriam Patricia. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Fisicas y Naturales. Instituto Geofisico Sismologico Volponi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alvarez Pontoriero, Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; ArgentinaFil: Sanchez, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; ArgentinaFil: Lince Klinger, Federico Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentin

    Mutual Events in the Cold Classical Transneptunian Binary System Sila and Nunam

    Full text link
    Hubble Space Telescope observations between 2001 and 2010 resolved the binary components of the Cold Classical transneptunian object (79360) Sila-Nunam (provisionally designated 1997 CS29). From these observations we have determined the circular, retrograde mutual orbit of Nunam relative to Sila with a period of 12.50995 \pm 0.00036 days and a semimajor axis of 2777 \pm 19 km. A multi-year season of mutual events, in which the two near-equal brightness bodies alternate in passing in front of one another as seen from Earth, is in progress right now, and on 2011 Feb. 1 UT, one such event was observed from two different telescopes. The mutual event season offers a rich opportunity to learn much more about this barely-resolvable binary system, potentially including component sizes, colors, shapes, and albedo patterns. The low eccentricity of the orbit and a photometric lightcurve that appears to coincide with the orbital period are consistent with a system that is tidally locked and synchronized, like the Pluto-Charon system. The orbital period and semimajor axis imply a system mass of (10.84 \pm 0.22) \times 10^18 kg, which can be combined with a size estimate based on Spitzer and Herschel thermal infrared observations to infer an average bulk density of 0.72 +0.37 -0.23 g cm^-3, comparable to the very low bulk densities estimated for small transneptunian binaries of other dynamical classes.Comment: In press in Icaru

    Bloated Stars as AGN Broad Line Clouds: The Emission Line Profiles

    Get PDF
    The Bloated Stars Scenario proposes that AGN broad line emission originates in the winds or envelopes of bloated stars (BS). Alexander and Netzer (1994) established that ~ 5e4 BSs with dense, decelerating winds can reproduce the observed emission line spectrum and avoid rapid collisional destruction. Here, we use the observed properties of AGN line profiles to further constrain the model parameters. In the BS model, the origin of the broad profiles is the stellar velocity field in the vicinity of the central black hole. We use a detailed photoionization code and a model of the stellar distribution function to calculate the BS emission line profiles and compare them to a large sample of AGN CIV, CIII] and MgII profiles. We find that the BSs can reproduce the general shape and width of typical AGN profiles as well as the line ratios if (i) The ionizing luminosity to black hole mass ratio is low enough. (ii) The broad line region size is limited by some cutoff mechanism. (iii) The fraction of the BSs in the stellar population falls off roughly as r^-2. (iv) The wind density and/or velocity are correlated with the black hole mass and ionizing luminosity. Under these conditions the strong tidal forces near the black hole play an important role in determining the line emission properties of the BSs. Some discrepancies remain: the calculated BS profiles tend to have weaker wings than the observed ones, and the differences between the profiles of different lines are somewhat smaller than those observed.Comment: 13 pages with 10 figures, LaTeX using mn.sty and epsf.sty, to appear in MNRA

    Spin down of protostars through gravitational torques

    Get PDF
    Young protostars embedded in circumstellar discs accrete from an angular momentum-rich mass reservoir. Without some braking mechanism, all stars should be spinning at or near break-up velocity. In this paper, we perform simulations of the self-gravitational collapse of an isothermal cloud using the ORION adaptive mesh refinement code and investigate the role that gravitational torques might play in the spin-down of the dense central object. While magnetic effects likely dominate for low mass stars, high mass and Population III stars might be less well magnetised. We find that gravitational torques alone prevent the central object from spinning up to more than half of its breakup velocity, because higher rotation rates lead to bar-like deformations that enable efficient angular momentum transfer to the surrounding medium. We also find that the long-term spin evolution of the central object is dictated by the properties of the surrounding disc. In particular, spiral modes with azimuthal wavenumber m=2m=2 couple more effectively to its spin than the lopsided m=1m=1 mode, which was found to inhibit spin evolution. We suggest that even in the absence of magnetic fields, gravitational torques may provide an upper limit on stellar spin, and that moderately massive circumstellar discs can cause long-term spin down.Comment: 13 pages, 17 figures, 1 table. Accepted by MNRAS. Updated reference

    Interpretation of gravity and magnetic anomalies at Lake Rotomahana: geological and hydrothermal implications

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Journal of Volcanology and Geothermal Research 314 (2016): 84-94, doi:10.1016/j.jvolgeores.2015.07.002.We investigate the geological and hydrothermal setting at Lake Rotomahana, using recently collected potential-field data, integrated with pre-existing regional gravity and aeromagnetic compilations. The lake is located on the southwest margin of the Okataina Volcanic Center (Haroharo caldera) and had well-known, pre-1886 Tarawera eruption hydrothermal manifestations (the famous Pink and White Terraces). Its present physiography was set by the caldera collapse during the 1886 eruption, together with the appearance of surface activities at the Waimangu Valley. Gravity models suggest subsidence associated with the Haroharo caldera is wider than the previously mapped extent of the caldera margins. Magnetic anomalies closely correlate with heat-flux data and surface hydrothermal manifestations and indicate that the west and northwestern shore of Lake Rotomahana are characterized by a large, well-developed hydrothermal field. The field extends beyond the lake area with deep connections to the Waimangu area to the south. On the south, the contact between hydrothermally demagnetized and magnetized rocks strikes along a structural lineament with high heat-flux and bubble plumes which suggest hydrothermal activity occurring west of Patiti Island. The absence of a well-defined demagnetization anomaly at this location suggests a very young age for the underlying geothermal system which was likely generated by the 1886 Tarawera eruption. Locally confined intense magnetic anomalies on the north shore of Lake Rotomahana are interpreted as basalts dikes with high magnetization. Some appear to have been emplaced before the 1886 Tarawera eruption. A dike located in proximity of the southwest lake shore may be related to the structural lineament controlling the development of the Patiti geothermal system, and could have been originated from the 1886 Tarawera eruption.Science funding provided by GNS Science Strategic Development Fund

    The Mutual Orbit, Mass, and Density of Transneptunian Binary Gknhmdm (229762 2007 UK126)

    Get PDF
    We present high spatial resolution images of the binary transneptunian object Gkn'hmdm (229762 2007 UK126) obtained with the Hubble Space Telescope and with the Keck observatory on Mauna Kea to determine the orbit of G' hG' h, the much smaller and redder satellite. G' h orbits in a prograde sense, on a circular or near-circular orbit with a period of 11.3 days and a semimajor axis of 6000 km. Tidal evolution is expected to be slow, so it is likely that the system formed already in a low-eccentricity configuration, and possibly also with the orbit plane of the satellite in or close to the plane of Gkn'hmdm's equator. From the orbital parameters we can compute the system mass to be 1.4 10(exp 20) kg. Combined with estimates of the size of Gkn'hmdm from thermal observations and stellar occultations, we can estimate the bulk density as about 1 g cm(exp 3). This low density is indicative of an ice-rich composition, unless there is substantial internal porosity. We consider the hypothesis that the composition is not unusually ice-rich compared with larger TNOs and comet nuclei, and instead the porosity is high, suggesting that mid-sized objects in the 400 to 1000 km diameter range mark the transition between small, porous objects and larger objects that have collapsed their internal void space as a result of their much higher internal pressures and temperatures
    corecore